On uniformly Gâteaux smooth C ( n ) -smooth norms on separable Banach spaces

Marián J. Fabián; Václav Zizler

Czechoslovak Mathematical Journal (1999)

  • Volume: 49, Issue: 3, page 657-672
  • ISSN: 0011-4642

Abstract

top
Every separable Banach space with C ( n ) -smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and C ( n ) -smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.

How to cite

top

Fabián, Marián J., and Zizler, Václav. "On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces." Czechoslovak Mathematical Journal 49.3 (1999): 657-672. <http://eudml.org/doc/30513>.

@article{Fabián1999,
abstract = {Every separable Banach space with $C^\{(n)\}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^\{(n)\}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.},
author = {Fabián, Marián J., Zizler, Václav},
journal = {Czechoslovak Mathematical Journal},
keywords = {separable Banach space; uniformly Gâteaux smooth; -smooth; integral convolution; bump function},
language = {eng},
number = {3},
pages = {657-672},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On uniformly Gâteaux smooth $C^\{(n)\}$-smooth norms on separable Banach spaces},
url = {http://eudml.org/doc/30513},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Fabián, Marián J.
AU - Zizler, Václav
TI - On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 3
SP - 657
EP - 672
AB - Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^{(n)}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
LA - eng
KW - separable Banach space; uniformly Gâteaux smooth; -smooth; integral convolution; bump function
UR - http://eudml.org/doc/30513
ER -

References

top
  1. 10.4153/CJM-1993-062-8, Canadian J. Math. 45 (1993), 1121–1134. (1993) MR1247537DOI10.4153/CJM-1993-062-8
  2. Calcul différentiel formes différentielles, Herman, Paris 1967. MR0223194
  3. Smoothness and renormings in Banach spaces, Pitman Monographs, No. 64, Longman House, Harlow, 1993. (1993) MR1211634
  4. 10.1007/BF02760975, Israel J. Math. 44 (1983), 262–276. (1983) MR0693663DOI10.1007/BF02760975
  5. 10.1017/S000497270001412X, Bull. Australian Math. Soc. 51 (1995), 291–300. (1995) MR1322795DOI10.1017/S000497270001412X
  6. Convex functions, monotone operators and differentiability, Lecture Notes in Math. No. 1364, Springer Verlag, 1993. (1993) Zbl0921.46039MR1238715
  7. Uniformly differentiable bump functions, Preprint. Zbl0876.46007MR1421846

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.