Discrete spectrum and principal functions of non-selfadjoint differential operator
Gülen Başcanbaz Tunca; Elgiz Bairamov
Czechoslovak Mathematical Journal (1999)
- Volume: 49, Issue: 4, page 689-700
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTunca, Gülen Başcanbaz, and Bairamov, Elgiz. "Discrete spectrum and principal functions of non-selfadjoint differential operator." Czechoslovak Mathematical Journal 49.4 (1999): 689-700. <http://eudml.org/doc/30516>.
@article{Tunca1999,
abstract = {In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^\{\prime \prime \}+q(x) y ,\quad - \infty < x < \infty \]
in $L_2(-\infty ,\infty )$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup \_\{-\infty < x < \infty \} \Big \lbrace \exp \bigl (\epsilon \sqrt\{|x|\}\bigr ) |q(x)|\Big \rbrace < \infty , \quad \epsilon > 0 \]
holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.},
author = {Tunca, Gülen Başcanbaz, Bairamov, Elgiz},
journal = {Czechoslovak Mathematical Journal},
keywords = {discrete spectrum; eigenvalue; spectral singularity; one-dimensional Schrödinger operator},
language = {eng},
number = {4},
pages = {689-700},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Discrete spectrum and principal functions of non-selfadjoint differential operator},
url = {http://eudml.org/doc/30516},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Tunca, Gülen Başcanbaz
AU - Bairamov, Elgiz
TI - Discrete spectrum and principal functions of non-selfadjoint differential operator
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 689
EP - 700
AB - In this article, we consider the operator $L$ defined by the differential expression \[ \ell (y)=-y^{\prime \prime }+q(x) y ,\quad - \infty < x < \infty \]
in $L_2(-\infty ,\infty )$, where $q$ is a complex valued function. Discussing the spectrum, we prove that $L$ has a finite number of eigenvalues and spectral singularities, if the condition \[ \sup _{-\infty < x < \infty } \Big \lbrace \exp \bigl (\epsilon \sqrt{|x|}\bigr ) |q(x)|\Big \rbrace < \infty , \quad \epsilon > 0 \]
holds. Later we investigate the properties of the principal functions corresponding to the eigenvalues and the spectral singularities.
LA - eng
KW - discrete spectrum; eigenvalue; spectral singularity; one-dimensional Schrödinger operator
UR - http://eudml.org/doc/30516
ER -
References
top- On the structure of discrete spectrum of the non-selfadjoint system of differential equations in the first order, J. Korean Math. Soc. 32 (1995), 401–413. (1995) MR1355662
- Expansion in Eigenfunctions of Selfadjoint Operators, Amer. Math. Soc., Providence R. I., 1968. (1968)
- On the second-order differential operator on the whole axis with spectral singularities, Dokl. Akad. Nauk Ukr. SSR 1 (1966), 38–41. (Russian) (1966)
- The principal part of the resolvent of non-selfadjoint operators in neighbourhood of spectral singularities, Functional Anal. Appl. 6 (1972), 185–192. (1972) MR0312307
- 10.1512/iumj.1984.33.33033, Indiana Univ. Math. Jour. 33 (1984), 613–638. (1984) Zbl0548.34022MR0749318DOI10.1512/iumj.1984.33.33033
- 10.1070/RM1971v026n04ABEH003985, Russian Math. Survey 26 (1971), 15–44. (1971) Zbl0225.47008DOI10.1070/RM1971v026n04ABEH003985
- A differential operator with spectral singularities I, II, AMS Translations 60 (2) (1967), 185–225, 227–283. (1967)
- Spectral analysis of a new class of non-selfadjoint operators with continuous and point spectrum, Soviet Math. Dokl. 30 (1984), 566–569. (1984)
- Sturm-Liouville Operators and Their Applications, Birkhauser, Basel, 1986. (1986) MR0897106
- Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operator of the second order on a semi-axis, AMS Translations 16 (2) (1960), 103–193. (1960) MR0117382
- Linear Differential Operators II, Ungar, New York, 1968. (1968) MR0353061
- The non-selfadjoint Schrödringer operator, Topics in Mathematical Physics 1 Consultants Bureau, New York (1967), 87–114. (1967)
- 10.1070/IM1975v009n01ABEH001468, USSR Izvestiya 9 (1975), 113–135. (1975) DOI10.1070/IM1975v009n01ABEH001468
- The Boundary Properties of Analytic Functions, Hochschulbücher für Math. Bb. 25, VEB Deutscher Verlag, Berlin, 1956. (1956)
- 10.1002/cpa.3160130405, Comm. Pure and Appl. Math. 13 (1960), 609–639. (1960) Zbl0096.08901MR0165372DOI10.1002/cpa.3160130405
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.