Exact asymptotic behavior of singular values of a class of integral operators
Czechoslovak Mathematical Journal (1999)
- Volume: 49, Issue: 4, page 707-732
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDostanić, Milutin R.. "Exact asymptotic behavior of singular values of a class of integral operators." Czechoslovak Mathematical Journal 49.4 (1999): 707-732. <http://eudml.org/doc/30518>.
@article{Dostanić1999,
abstract = {We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _\{\Omega \} T(x,y)k(x-y) \cdot \mathrm \{d\}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb \{R\}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^\{\frac\{m\}\{2\}\})$, $k_0 (x) = x^\{\alpha -1\} L(\tfrac\{1\}\{x\})$, $\tfrac\{1\}\{2\} - \tfrac\{1\}\{2m\}< \alpha < \tfrac\{1\}\{2\}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.},
author = {Dostanić, Milutin R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectrum of integral operator; singular value; asymptotic behavior},
language = {eng},
number = {4},
pages = {707-732},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exact asymptotic behavior of singular values of a class of integral operators},
url = {http://eudml.org/doc/30518},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Dostanić, Milutin R.
TI - Exact asymptotic behavior of singular values of a class of integral operators
JO - Czechoslovak Mathematical Journal
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 4
SP - 707
EP - 732
AB - We find an exact asymptotic formula for the singular values of the integral operator of the form $\int _{\Omega } T(x,y)k(x-y) \cdot \mathrm {d}y \: L^2 (\Omega )\rightarrow L^2(\Omega )$ ($\Omega \subset \mathbb {R}^m$, a Jordan measurable set) where $k(t) = k_0((t^2_1 + t^2_2 + \ldots t^2_m)^{\frac{m}{2}})$, $k_0 (x) = x^{\alpha -1} L(\tfrac{1}{x})$, $\tfrac{1}{2} - \tfrac{1}{2m}< \alpha < \tfrac{1}{2}$ and $L$ is slowly varying function with some additional properties. The formula is an explicit expression in terms of $L$ and $T$.
LA - eng
KW - spectrum of integral operator; singular value; asymptotic behavior
UR - http://eudml.org/doc/30518
ER -
References
top- Asymptotic behavior of the spectrum of weakly polar integral operators, Izv. Akad. Nauk. SSSR, Ser. Mat. Tom 34 (1970), N5, 1151–1168. (1970)
- Eigenvalues of weakly singular integral operators, J. London Math. Soc. (2) 41 (1990), 323–335. (1990) MR1067272
- An estimation of singular of convolution operators, Proc. Amer. Math. Soc. 123 (1995), N5, 1399–1409. (1995) MR1246522
- Introduction to the Theory of Linear Nonselfadjoint Operators, in “Translation of Math. monographs” Vol. 18, Amer. Math. Soc., Providence, R.I., 1969. (1969) MR0246142
- 10.1307/mmj/1028990026, Mich. Math. J. 3 (1955/56), 141–148. (1955/56) MR0085650DOI10.1307/mmj/1028990026
- Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal, Math. USSR Sb. T 94 (136) N3 (7), 1974, pp. 445–451. (1974) MR0361935
- Lectures on Mathematics Physics, Moscow, 1968. (1968)
- 10.1016/0022-247X(90)90423-D, J. of Math. Analysis and Applications 145 (1990), 573–605. (1990) Zbl0699.42001MR1038180DOI10.1016/0022-247X(90)90423-D
- 10.1017/S0013091500016254, Proceeding of the Edinburgh Math. Soc. 22 (1979), 137–144. (1979) MR0549459DOI10.1017/S0013091500016254
- Some results on the asymptotic behavior of eigenvalues for a class of integral equations with translations kernels, J. Math. Mech. 12 (1963), 619–628. (1963) MR0150551
- Asymptotic of the spectrum of abstract integral operators, Trudy. Moscow Mat. Obšč. T. 34 (1977), 105–128. (1977) MR0461221
- Fractional Integrals and Derivative and Some Applications, Minsk, 1987. (1987)
- Regularly Varying Functions, Springer Verlag, 1976. (1976) Zbl0324.26002MR0453936
- 10.1007/BF00282438, Arch. Rational Mech. Analys. 17 (1964), 215–229. (1964) Zbl0183.11701MR0169015DOI10.1007/BF00282438
- 10.1090/S0002-9947-1963-0155161-0, Trans. Amer. Math. Soc. 109 (1963), 278–295. (1963) Zbl0178.14501MR0155161DOI10.1090/S0002-9947-1963-0155161-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.