A new efficient presentation for and the structure of the groups
Bilal Vatansever; David M. Gill; Nuran Eren
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 1, page 67-74
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topVatansever, Bilal, Gill, David M., and Eren, Nuran. "A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$." Czechoslovak Mathematical Journal 50.1 (2000): 67-74. <http://eudml.org/doc/30542>.
@article{Vatansever2000,
abstract = {$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^\{m+3\}a^\{-n\}b^ma^\{-n\}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions.},
author = {Vatansever, Bilal, Gill, David M., Eren, Nuran},
journal = {Czechoslovak Mathematical Journal},
keywords = {special linear groups; finite groups; Schur multipliers; CAYLEY; efficient presentations},
language = {eng},
number = {1},
pages = {67-74},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$},
url = {http://eudml.org/doc/30542},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Vatansever, Bilal
AU - Gill, David M.
AU - Eren, Nuran
TI - A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 67
EP - 74
AB - $G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions.
LA - eng
KW - special linear groups; finite groups; Schur multipliers; CAYLEY; efficient presentations
UR - http://eudml.org/doc/30542
ER -
References
top- Group Extensions, Presentations and the Schur Multiplicator. Lecture Notes in Mathematics 958, Springer-Verlag, Berlin, 1982. (1982) MR0681287
- 10.1112/blms/12.1.17, Bull. London Math. Soc. 12 (1980), 17–20. (1980) MR0565476DOI10.1112/blms/12.1.17
- An introduction to the group language CAYLEY, Proc. Durham Symposium on Computational Group Theory, Academic Press, London, 1984, pp. 145–183. (1984) MR0760656
- The binary polyhedral groups and other generalizations of the quaternion group, Duke Math. J. 7 (1940), 367–379. (1940) Zbl0024.15002MR0003409
- Endliche Gruppen I, Springer, Berlin, 1967. (1967) Zbl0217.07201MR0224703
- The Schur Multiplier, Oxford University Press, Oxford, 1987. (1987) Zbl0619.20001MR1200015
- Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85–137. (1907)
- 10.1016/0040-9383(65)90064-9, Topology 4 (1965), 193–208. (1965) Zbl0146.04002MR0179234DOI10.1016/0040-9383(65)90064-9
- Certain Classes of Group Presentations, Ph.D. thesis University of St. Andrews, 1992. (1992)
- A new efficient presentation for and the structure of the groups , Doga-Tr. J. of Mathematics 17 (1993), 148–154. (1993) MR1226568
- A new efficient presentation for and the structure of the groups , J. Inst. Math. Comput. Sci. Math. Ser. 7 (1994), 207–211. (1994) MR1338491
- 10.1007/BF00052109, Acta Math. Hungar. 71 (1996), 205–210. (1996) MR1397552DOI10.1007/BF00052109
- The Deficiency of Finite Groups, Ph.D. thesis University of Queensland, 1968. (1968)
- The Schur Multiplier, Groups (St. Andrews, 1981), C. M. Campbell and E. F. Robertson (eds.), LMS Lecture Notes, 71, Cambridge University Press, 1982, pp. 137–154. (1982) Zbl0502.20003MR0679156
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.