A new efficient presentation for P S L ( 2 , 5 ) and the structure of the groups G ( 3 , m , n )

Bilal Vatansever; David M. Gill; Nuran Eren

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 1, page 67-74
  • ISSN: 0011-4642

Abstract

top
G ( 3 , m , n ) is the group presented by a , b a 5 = ( a b ) 2 = b m + 3 a - n b m a - n = 1 . In this paper, we study the structure of G ( 3 , m , n ) . We also give a new efficient presentation for the Projective Special Linear group P S L ( 2 , 5 ) and in particular we prove that P S L ( 2 , 5 ) is isomorphic to G ( 3 , m , n ) under certain conditions.

How to cite

top

Vatansever, Bilal, Gill, David M., and Eren, Nuran. "A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$." Czechoslovak Mathematical Journal 50.1 (2000): 67-74. <http://eudml.org/doc/30542>.

@article{Vatansever2000,
abstract = {$G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^\{m+3\}a^\{-n\}b^ma^\{-n\}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions.},
author = {Vatansever, Bilal, Gill, David M., Eren, Nuran},
journal = {Czechoslovak Mathematical Journal},
keywords = {special linear groups; finite groups; Schur multipliers; CAYLEY; efficient presentations},
language = {eng},
number = {1},
pages = {67-74},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$},
url = {http://eudml.org/doc/30542},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Vatansever, Bilal
AU - Gill, David M.
AU - Eren, Nuran
TI - A new efficient presentation for $PSL(2,5)$ and the structure of the groups $G(3,m,n)$
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 1
SP - 67
EP - 74
AB - $G(3,m,n)$ is the group presented by $\langle a,b\mid a^5=(ab)^2=b^{m+3}a^{-n}b^ma^{-n}=1\rangle $. In this paper, we study the structure of $G(3,m,n)$. We also give a new efficient presentation for the Projective Special Linear group $PSL(2,5)$ and in particular we prove that $PSL(2,5)$ is isomorphic to $G(3,m,n)$ under certain conditions.
LA - eng
KW - special linear groups; finite groups; Schur multipliers; CAYLEY; efficient presentations
UR - http://eudml.org/doc/30542
ER -

References

top
  1. Group Extensions, Presentations and the Schur Multiplicator. Lecture Notes in Mathematics 958, Springer-Verlag, Berlin, 1982. (1982) MR0681287
  2. 10.1112/blms/12.1.17, Bull. London Math. Soc. 12 (1980), 17–20. (1980) MR0565476DOI10.1112/blms/12.1.17
  3. An introduction to the group language CAYLEY, Proc. Durham Symposium on Computational Group Theory, Academic Press, London, 1984, pp. 145–183. (1984) MR0760656
  4. The binary polyhedral groups and other generalizations of the quaternion group, Duke Math. J. 7 (1940), 367–379. (1940) Zbl0024.15002MR0003409
  5. Endliche Gruppen I, Springer, Berlin, 1967. (1967) Zbl0217.07201MR0224703
  6. The Schur Multiplier, Oxford University Press, Oxford, 1987. (1987) Zbl0619.20001MR1200015
  7. Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 132 (1907), 85–137. (1907) 
  8. 10.1016/0040-9383(65)90064-9, Topology 4 (1965), 193–208. (1965) Zbl0146.04002MR0179234DOI10.1016/0040-9383(65)90064-9
  9. Certain Classes of Group Presentations, Ph.D. thesis University of St. Andrews, 1992. (1992) 
  10. A new efficient presentation for P S L ( 2 , 13 ) and the structure of the groups G ( 7 , m ) , Doga-Tr. J. of Mathematics 17 (1993), 148–154. (1993) MR1226568
  11. A new efficient presentation for P S L ( 2 , 37 ) and the structure of the groups G ( 9 , m ) , J. Inst. Math. Comput. Sci. Math. Ser. 7 (1994), 207–211. (1994) MR1338491
  12. 10.1007/BF00052109, Acta Math. Hungar. 71 (1996), 205–210. (1996) MR1397552DOI10.1007/BF00052109
  13. The Deficiency of Finite Groups, Ph.D. thesis University of Queensland, 1968. (1968) 
  14. The Schur Multiplier, Groups (St. Andrews, 1981), C. M. Campbell and E. F. Robertson (eds.), LMS Lecture Notes, 71, Cambridge University Press, 1982, pp. 137–154. (1982) Zbl0502.20003MR0679156

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.