Orthomodular lattices with state-separated noncompatible pairs
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 2, page 359-366
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMayet, R., and Pták, Pavel. "Orthomodular lattices with state-separated noncompatible pairs." Czechoslovak Mathematical Journal 50.2 (2000): 359-366. <http://eudml.org/doc/30567>.
@article{Mayet2000,
abstract = {In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate by examples that these classes may (and need not) be varieties. The results supplement the research carried on in , , , , , , , and .},
author = {Mayet, R., Pták, Pavel},
journal = {Czechoslovak Mathematical Journal},
keywords = {orthomodular lattice; state; noncompatible pairs; (quasi)variety; orthomodular lattice; state; noncompatible pairs; (quasi)variety},
language = {eng},
number = {2},
pages = {359-366},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Orthomodular lattices with state-separated noncompatible pairs},
url = {http://eudml.org/doc/30567},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Mayet, R.
AU - Pták, Pavel
TI - Orthomodular lattices with state-separated noncompatible pairs
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 359
EP - 366
AB - In the logico-algebraic foundation of quantum mechanics one often deals with the orthomodular lattices (OML) which enjoy state-separating properties of noncompatible pairs (see e.g. , and ). These properties usually guarantee reasonable “richness” of the state space—an assumption needed in developing the theory of quantum logics. In this note we consider these classes of OMLs from the universal algebra standpoint, showing, as the main result, that these classes form quasivarieties. We also illustrate by examples that these classes may (and need not) be varieties. The results supplement the research carried on in , , , , , , , and .
LA - eng
KW - orthomodular lattice; state; noncompatible pairs; (quasi)variety; orthomodular lattice; state; noncompatible pairs; (quasi)variety
UR - http://eudml.org/doc/30567
ER -
References
top- 10.1016/0034-4877(96)89766-7, Rep. Math. Phys. 37 (1996), 261–266. (1996) MR1400390DOI10.1016/0034-4877(96)89766-7
- Orthomodular Lattices (Algebraic Approach), Academia (Prague), 1984. (1984) MR0785005
- 10.4153/CJM-1971-089-1, Canad. J. Math. 23 (1971), 802–810. (1971) MR0289374DOI10.4153/CJM-1971-089-1
- Varieties of orthomodular lattices with a strongly full set of states, Demonstratio Math. XIV, 3 (1981), 725–732. (1981) Zbl0483.06007MR0663122
- 10.1515/dema-1982-0320, Demonstratio Math. XV, 3 (1982), 817–822. (1982) MR0693543DOI10.1515/dema-1982-0320
- Some equations related to states on orthomodular lattices, Demonstratio Math. XVII, 1 (1984), 241–250. (1984) MR0760356
- Universal Algebra (2nd ed.), Springer-Verlag, New York/Heidelberg/Berlin, 1979. (1979) Zbl0412.08001MR0538623
- 10.1016/0097-3165(71)90015-X, J. Combin. Theory 10 (1971), 119–132. (1971) Zbl0219.06007MR0274355DOI10.1016/0097-3165(71)90015-X
- Stochastic Methods in Quantum Mechanics, Elsevier/North-Holland, Amsterdam, 1979. (1979) Zbl0439.46047MR0543489
- Orthomodular Lattices, Academic Press, London, 1983. (1983) Zbl0528.06012MR0716496
- Orthomodular lattices with fully nontrivial commutators, Comment. Math. Univ. Carolin. 33, 1 (1992), 25–32. (1992) MR1173742
- 10.1007/BF01195144, Algebra Universalis 20 (1985), 368–386. (1985) Zbl0581.06006MR0811695DOI10.1007/BF01195144
- 10.1007/BF01237719, Algebra Universalis 23 (1986), 167–195. (1986) Zbl0618.06003MR0896969DOI10.1007/BF01237719
- 10.4064/cm-54-1-1-7, Colloq. Math. 54 (1987), 1–7. (1987) MR0928651DOI10.4064/cm-54-1-1-7
- Orthomodular Structures as Quantum Logics, Kluwer, 1991. (1991)
- 10.1016/0022-4049(83)90074-9, J. Pure Appl. Algebra 28 (1983), 75–80. (1983) MR0692854DOI10.1016/0022-4049(83)90074-9
- 10.1016/0097-3165(74)90096-X, J. Combin. Theory 17 (1974), 317–328. (1974) MR0364042DOI10.1016/0097-3165(74)90096-X
- Geometry of Quantum Theory I, II, Van Nostrand, Princeton, 1968, 1970. (1968, 1970)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.