Relative polars in ordered sets

Radomír Halaš

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 2, page 415-429
  • ISSN: 0011-4642

Abstract

top
In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of R -polars are studied. Connections between R -polars and prime ideals, especially in distributive sets, are found.

How to cite

top

Halaš, Radomír. "Relative polars in ordered sets." Czechoslovak Mathematical Journal 50.2 (2000): 415-429. <http://eudml.org/doc/30572>.

@article{Halaš2000,
abstract = {In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found.},
author = {Halaš, Radomír},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ordered set; distributive set; ideal; prime ideal; $R$-polar; annihilator; ordered set; distributive set; ideal; prime ideal; -polar; annihilator},
language = {eng},
number = {2},
pages = {415-429},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative polars in ordered sets},
url = {http://eudml.org/doc/30572},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Halaš, Radomír
TI - Relative polars in ordered sets
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 2
SP - 415
EP - 429
AB - In the paper, the notion of relative polarity in ordered sets is introduced and the lattices of $R$-polars are studied. Connections between $R$-polars and prime ideals, especially in distributive sets, are found.
LA - eng
KW - Ordered set; distributive set; ideal; prime ideal; $R$-polar; annihilator; ordered set; distributive set; ideal; prime ideal; -polar; annihilator
UR - http://eudml.org/doc/30572
ER -

References

top
  1. Lattice-Ordered Groups (An Introduction), Dordrecht, Reidel, 1987. (1987) MR0937703
  2. Complemented ordered sets, Arch. Math. (Brno) 28 (1992), 25–34. (1992) Zbl0785.06002MR1201863
  3. Indexed annihilators in ordered sets, Math. Slovaca 45 (1995), 501–508. (1995) MR1390703
  4. 10.1007/BF00353659, Order 5 (1989), 407–423. (1989) MR1010389DOI10.1007/BF00353659
  5. 10.1016/0012-365X(81)90201-6, Discrete Math. 35 (1981), 53–110. (1981) MR0620665DOI10.1016/0012-365X(81)90201-6
  6. Distributivgesetze und die Dedekindsche Schnittverwollständigung, Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. (1982) MR0693169
  7. Lattice Theory, Akademie Verlag, Berlin, 1978. (1978) MR0504338
  8. Pseudocomplemented ordered sets, Arch. Math. (Brno) 29 (1993), 153–160. (1993) MR1263116
  9. Characterization of distributive sets by generalized annihilators, Arch. Math. (Brno) 30 (1994), 25–27. (1994) MR1282110
  10. Decompositions of directed sets with zero, Math. Slovaca 45 (1995), 9–17. (1995) MR1335835
  11. Ideals and annihilators in ordered sets, Czechoslovak Math. J. 45(120) (1995), 127–134. (1995) MR1314535
  12. Some properties of Boolean ordered sets, Czechoslovak Math. J. 46(121) (1996), 93–98. (1996) MR1371691
  13. A characterization of finite Stone PC-ordered sets, Math. Bohem. 121 (1996), 117–120. (1996) MR1400602
  14. Annihilators and ideals in distributive and modular ordered sets, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. (1995) MR1447252
  15. Polars and prime ideals in ordered sets, Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. (1995) MR1369627
  16. M -polars in lattices, Čas. Pěst. Mat. 95 (1970), 252–255. (1970) MR0274352
  17. M -Polaren in halbgeordneten Mengen, Čas. Pěst. Mat. 95 (1970), 416–419. (1970) MR0279004
  18. Translations of modular and distributive ordered sets, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. (1988) MR1039879
  19. Boolean and distributive ordered sets: Characterization and representation by sets (preprint), . MR1354802
  20. A characterization of o -distributive semilattices, Acta Sci. Math. (Szeged) 54 (1990), 241–246. (1990) MR1096803
  21. On o -modular and o -distributive semilattices, Math. Slovaca 42 (1992), 3–13. (1992) 
  22. The ordinal variety of distributive ordered sets of width two, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. (1991) MR1166422
  23. Non-modular and non-distributive ordered sets of lattices, Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149. (1993) 
  24. A characterization of polarities the lattice of polars of which is Boolean, Czechoslovak Math. J. 91(106) (1981), 98–102. (1981) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.