On solutions of quasilinear wave equations with nonlinear damping terms
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 3, page 565-585
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Jong Yeoul, and Bae, Jeong Ja. "On solutions of quasilinear wave equations with nonlinear damping terms." Czechoslovak Mathematical Journal 50.3 (2000): 565-585. <http://eudml.org/doc/30585>.
@article{Park2000,
abstract = {In this paper we consider the existence and asymptotic behavior of solutions of the following problem: \[ u\_\{tt\}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert \_2^2 +\beta \Vert \nabla v(t,x)\Vert \_2^2)\Delta u(t,x) +\delta |u\_t(t,x)|^\{p-1\}u\_t(t,x) \quad =\mu |u(t,x)|^\{q-1\}u(t,x), \quad x \in \Omega ,\quad t \ge 0, v\_\{tt\}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert \_2^2+ \beta \Vert \nabla v(t,x)\Vert \_2^2) \Delta v(t,x) +\delta |v\_t(t,x)|^\{p-1\}v\_t(t,x) \quad =\mu |v(t,x)|^\{q-1\}v(t,x), \quad x \in \Omega ,\quad t \ge 0, u(0,x)=u\_0(x),\quad u\_t(0,x)=u\_1(x), \quad x \in \Omega , v(0,x)=v\_0(x),\quad v\_t(0,x)=v\_1(x), \quad x \in \Omega , u|\_\{\_\{\partial \Omega \}\}=v|\_\{\_\{\partial \Omega \}\}=0 \]
where $q > 1$, $ p \ge 1$, $ \delta >0$, $ \alpha > 0$, $ \beta \ge 0 $, $\mu \in \mathbb \{R\} $ and $\Delta $ is the Laplacian in $\mathbb \{R\}^N$.},
author = {Park, Jong Yeoul, Bae, Jeong Ja},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method; quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method},
language = {eng},
number = {3},
pages = {565-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solutions of quasilinear wave equations with nonlinear damping terms},
url = {http://eudml.org/doc/30585},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Park, Jong Yeoul
AU - Bae, Jeong Ja
TI - On solutions of quasilinear wave equations with nonlinear damping terms
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 565
EP - 585
AB - In this paper we consider the existence and asymptotic behavior of solutions of the following problem: \[ u_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2 +\beta \Vert \nabla v(t,x)\Vert _2^2)\Delta u(t,x) +\delta |u_t(t,x)|^{p-1}u_t(t,x) \quad =\mu |u(t,x)|^{q-1}u(t,x), \quad x \in \Omega ,\quad t \ge 0, v_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2+ \beta \Vert \nabla v(t,x)\Vert _2^2) \Delta v(t,x) +\delta |v_t(t,x)|^{p-1}v_t(t,x) \quad =\mu |v(t,x)|^{q-1}v(t,x), \quad x \in \Omega ,\quad t \ge 0, u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x), \quad x \in \Omega , v(0,x)=v_0(x),\quad v_t(0,x)=v_1(x), \quad x \in \Omega , u|_{_{\partial \Omega }}=v|_{_{\partial \Omega }}=0 \]
where $q > 1$, $ p \ge 1$, $ \delta >0$, $ \alpha > 0$, $ \beta \ge 0 $, $\mu \in \mathbb {R} $ and $\Delta $ is the Laplacian in $\mathbb {R}^N$.
LA - eng
KW - quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method; quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method
UR - http://eudml.org/doc/30585
ER -
References
top- 10.1016/0362-546X(87)90031-9, Nonlinear Anal. 11 (1987), 125–137. (1987) Zbl0613.34013MR0872045DOI10.1016/0362-546X(87)90031-9
- Principles of Differential and Integral Equations, Chelsea Publishing Company, The Bronx, New York, 1977. (1977) MR0440097
- On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions, T R U Math. 24 (1988), 1–17. (1988) Zbl0707.35094MR0999375
- 10.1006/jmaa.1996.0464, J. Math. Anal. Appl. 204 (1996), 729–753. (1996) MR1422769DOI10.1006/jmaa.1996.0464
- 10.1016/0022-247X(77)90211-6, J. Math. Anal. Appl. 58 (1977), 336–343. (1977) MR0437890DOI10.1016/0022-247X(77)90211-6
- 10.1016/0022-460X(68)90200-9, J. Sound Vibration 8 (1968), 134–146. (1968) DOI10.1016/0022-460X(68)90200-9
- On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms, Funkcial. Ekvac. 33 (1990), 151–159. (1990) MR1065473
- 10.1006/jdeq.1997.3263, J. Differential Equations 137 (1997), 273–301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
- Variational Inequality for a Nonlinear Model of the Oscillations of Beams, Nonlinear Anal. 28 (1997), 1101–1108. (1997) Zbl0871.35064MR1422803
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.