On solutions of quasilinear wave equations with nonlinear damping terms

Jong Yeoul Park; Jeong Ja Bae

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 3, page 565-585
  • ISSN: 0011-4642

Abstract

top
In this paper we consider the existence and asymptotic behavior of solutions of the following problem: u t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ u ( t , x ) + δ | u t ( t , x ) | p - 1 u t ( t , x ) = μ | u ( t , x ) | q - 1 u ( t , x ) , x Ω , t 0 , v t t ( t , x ) - ( α + β u ( t , x ) 2 2 + β v ( t , x ) 2 2 ) Δ v ( t , x ) + δ | v t ( t , x ) | p - 1 v t ( t , x ) = μ | v ( t , x ) | q - 1 v ( t , x ) , x Ω , t 0 , u ( 0 , x ) = u 0 ( x ) , u t ( 0 , x ) = u 1 ( x ) , x Ω , v ( 0 , x ) = v 0 ( x ) , v t ( 0 , x ) = v 1 ( x ) , x Ω , u | Ω = v | Ω = 0 where q > 1 , p 1 , δ > 0 , α > 0 , β 0 , μ and Δ is the Laplacian in N .

How to cite

top

Park, Jong Yeoul, and Bae, Jeong Ja. "On solutions of quasilinear wave equations with nonlinear damping terms." Czechoslovak Mathematical Journal 50.3 (2000): 565-585. <http://eudml.org/doc/30585>.

@article{Park2000,
abstract = {In this paper we consider the existence and asymptotic behavior of solutions of the following problem: \[ u\_\{tt\}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert \_2^2 +\beta \Vert \nabla v(t,x)\Vert \_2^2)\Delta u(t,x) +\delta |u\_t(t,x)|^\{p-1\}u\_t(t,x) \quad =\mu |u(t,x)|^\{q-1\}u(t,x), \quad x \in \Omega ,\quad t \ge 0, v\_\{tt\}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert \_2^2+ \beta \Vert \nabla v(t,x)\Vert \_2^2) \Delta v(t,x) +\delta |v\_t(t,x)|^\{p-1\}v\_t(t,x) \quad =\mu |v(t,x)|^\{q-1\}v(t,x), \quad x \in \Omega ,\quad t \ge 0, u(0,x)=u\_0(x),\quad u\_t(0,x)=u\_1(x), \quad x \in \Omega , v(0,x)=v\_0(x),\quad v\_t(0,x)=v\_1(x), \quad x \in \Omega , u|\_\{\_\{\partial \Omega \}\}=v|\_\{\_\{\partial \Omega \}\}=0 \] where $q > 1$, $ p \ge 1$, $ \delta >0$, $ \alpha > 0$, $ \beta \ge 0 $, $\mu \in \mathbb \{R\} $ and $\Delta $ is the Laplacian in $\mathbb \{R\}^N$.},
author = {Park, Jong Yeoul, Bae, Jeong Ja},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method; quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method},
language = {eng},
number = {3},
pages = {565-585},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On solutions of quasilinear wave equations with nonlinear damping terms},
url = {http://eudml.org/doc/30585},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Park, Jong Yeoul
AU - Bae, Jeong Ja
TI - On solutions of quasilinear wave equations with nonlinear damping terms
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 565
EP - 585
AB - In this paper we consider the existence and asymptotic behavior of solutions of the following problem: \[ u_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2 +\beta \Vert \nabla v(t,x)\Vert _2^2)\Delta u(t,x) +\delta |u_t(t,x)|^{p-1}u_t(t,x) \quad =\mu |u(t,x)|^{q-1}u(t,x), \quad x \in \Omega ,\quad t \ge 0, v_{tt}(t,x)-(\alpha +\beta \Vert \nabla u(t,x)\Vert _2^2+ \beta \Vert \nabla v(t,x)\Vert _2^2) \Delta v(t,x) +\delta |v_t(t,x)|^{p-1}v_t(t,x) \quad =\mu |v(t,x)|^{q-1}v(t,x), \quad x \in \Omega ,\quad t \ge 0, u(0,x)=u_0(x),\quad u_t(0,x)=u_1(x), \quad x \in \Omega , v(0,x)=v_0(x),\quad v_t(0,x)=v_1(x), \quad x \in \Omega , u|_{_{\partial \Omega }}=v|_{_{\partial \Omega }}=0 \] where $q > 1$, $ p \ge 1$, $ \delta >0$, $ \alpha > 0$, $ \beta \ge 0 $, $\mu \in \mathbb {R} $ and $\Delta $ is the Laplacian in $\mathbb {R}^N$.
LA - eng
KW - quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method; quasilinear wave equation; existence and uniqueness; asymptotic behavior; Galerkin method
UR - http://eudml.org/doc/30585
ER -

References

top
  1. 10.1016/0362-546X(87)90031-9, Nonlinear Anal. 11 (1987), 125–137. (1987) Zbl0613.34013MR0872045DOI10.1016/0362-546X(87)90031-9
  2. Principles of Differential and Integral Equations, Chelsea Publishing Company, The Bronx, New York, 1977. (1977) MR0440097
  3. On the Existence of Global Solutions for some Nonlinear Hyperbolic Equations with Neumann Conditions, T R U Math. 24 (1988), 1–17. (1988) Zbl0707.35094MR0999375
  4. 10.1006/jmaa.1996.0464, J. Math. Anal. Appl. 204 (1996), 729–753. (1996) MR1422769DOI10.1006/jmaa.1996.0464
  5. 10.1016/0022-247X(77)90211-6, J. Math. Anal. Appl. 58 (1977), 336–343. (1977) MR0437890DOI10.1016/0022-247X(77)90211-6
  6. 10.1016/0022-460X(68)90200-9, J. Sound Vibration 8 (1968), 134–146. (1968) DOI10.1016/0022-460X(68)90200-9
  7. On Global Solutions of some Degenerate Quasilinear Hyperbolic Equation with Dissipative Damping terms, Funkcial. Ekvac. 33 (1990), 151–159. (1990) MR1065473
  8. 10.1006/jdeq.1997.3263, J. Differential Equations 137 (1997), 273–301. (1997) Zbl0879.35110MR1456598DOI10.1006/jdeq.1997.3263
  9. Variational Inequality for a Nonlinear Model of the Oscillations of Beams, Nonlinear Anal. 28 (1997), 1101–1108. (1997) Zbl0871.35064MR1422803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.