On copies of c 0 in the bounded linear operator space

Juan Carlos Ferrando; J. M. Amigó

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 3, page 651-656
  • ISSN: 0011-4642

Abstract

top
In this note we study some properties concerning certain copies of the classic Banach space c 0 in the Banach space X , Y of all bounded linear operators between a normed space X and a Banach space Y equipped with the norm of the uniform convergence of operators.

How to cite

top

Ferrando, Juan Carlos, and Amigó, J. M.. "On copies of $c_0$ in the bounded linear operator space." Czechoslovak Mathematical Journal 50.3 (2000): 651-656. <http://eudml.org/doc/30591>.

@article{Ferrando2000,
abstract = {In this note we study some properties concerning certain copies of the classic Banach space $c_\{0\}$ in the Banach space $\mathcal \{L\}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators.},
author = {Ferrando, Juan Carlos, Amigó, J. M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space basic sequence copy of $c_\{0\}$ copy of $\ell _\{\infty \}$; basic sequence; copy of $c_\{0\}$; copy of $\ell _\{\infty \}$; Banach space; basic sequence; copy of ; copy of },
language = {eng},
number = {3},
pages = {651-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On copies of $c_0$ in the bounded linear operator space},
url = {http://eudml.org/doc/30591},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Ferrando, Juan Carlos
AU - Amigó, J. M.
TI - On copies of $c_0$ in the bounded linear operator space
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 651
EP - 656
AB - In this note we study some properties concerning certain copies of the classic Banach space $c_{0}$ in the Banach space $\mathcal {L}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators.
LA - eng
KW - Banach space basic sequence copy of $c_{0}$ copy of $\ell _{\infty }$; basic sequence; copy of $c_{0}$; copy of $\ell _{\infty }$; Banach space; basic sequence; copy of ; copy of
UR - http://eudml.org/doc/30591
ER -

References

top
  1. Cotype and complemented copies of c 0 in spaces of operators, Czechoslovak Math. J. 46 (1996), 271–289. (1996) MR1388616
  2. 10.4064/sm-17-2-151-164, Studia Math. 17 (1958), 151–164. (1958) MR0115069DOI10.4064/sm-17-2-151-164
  3. Sequences and Series in Banach Spaces, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984. (1984) MR0737004
  4. 10.1017/S0305004100069401, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526. (1990) MR1068453DOI10.1017/S0305004100069401
  5. 10.1090/S0002-9939-1990-1012927-4, Proc. Amer. Math. Soc. 109 (1990), 747–752. (1990) MR1012927DOI10.1090/S0002-9939-1990-1012927-4
  6. On complemented copies of c 0 in spaces of compact operators, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 32 (1992), 29–32. (1992) MR1202755
  7. On complemented copies of c 0 in spaces of compact operators, II, Commentat. Math. Univ. Carol. 35 (1994), 259–261. (1994) MR1286572
  8. When does b v c a Σ , X contain a copy of ?, Math. Scand. 74 (1994), 271–274. (1994) MR1298368
  9. 10.7146/math.scand.a-12555, Math. Scand. 77 (1995), 148–152. (1995) MR1365911DOI10.7146/math.scand.a-12555
  10. 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. (1974) Zbl0266.47038MR0341154DOI10.1007/BF01432152
  11. 10.4064/sm-37-1-13-36, Studia Math. 37 (1979), 13–36. (1979) MR0270122DOI10.4064/sm-37-1-13-36

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.