On copies of c 0 in the bounded linear operator space

Juan Carlos Ferrando; J. M. Amigó

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 3, page 651-656
  • ISSN: 0011-4642

Abstract

top
In this note we study some properties concerning certain copies of the classic Banach space c 0 in the Banach space X , Y of all bounded linear operators between a normed space X and a Banach space Y equipped with the norm of the uniform convergence of operators.

How to cite

top

Ferrando, Juan Carlos, and Amigó, J. M.. "On copies of $c_0$ in the bounded linear operator space." Czechoslovak Mathematical Journal 50.3 (2000): 651-656. <http://eudml.org/doc/30591>.

@article{Ferrando2000,
abstract = {In this note we study some properties concerning certain copies of the classic Banach space $c_\{0\}$ in the Banach space $\mathcal \{L\}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators.},
author = {Ferrando, Juan Carlos, Amigó, J. M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach space basic sequence copy of $c_\{0\}$ copy of $\ell _\{\infty \}$; basic sequence; copy of $c_\{0\}$; copy of $\ell _\{\infty \}$; Banach space; basic sequence; copy of ; copy of },
language = {eng},
number = {3},
pages = {651-656},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On copies of $c_0$ in the bounded linear operator space},
url = {http://eudml.org/doc/30591},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Ferrando, Juan Carlos
AU - Amigó, J. M.
TI - On copies of $c_0$ in the bounded linear operator space
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 3
SP - 651
EP - 656
AB - In this note we study some properties concerning certain copies of the classic Banach space $c_{0}$ in the Banach space $\mathcal {L}\left( X,Y\right) $ of all bounded linear operators between a normed space $X$ and a Banach space $Y$ equipped with the norm of the uniform convergence of operators.
LA - eng
KW - Banach space basic sequence copy of $c_{0}$ copy of $\ell _{\infty }$; basic sequence; copy of $c_{0}$; copy of $\ell _{\infty }$; Banach space; basic sequence; copy of ; copy of
UR - http://eudml.org/doc/30591
ER -

References

top
  1. Cotype and complemented copies of c 0 in spaces of operators, Czechoslovak Math. J. 46 (1996), 271–289. (1996) MR1388616
  2. 10.4064/sm-17-2-151-164, Studia Math. 17 (1958), 151–164. (1958) MR0115069DOI10.4064/sm-17-2-151-164
  3. Sequences and Series in Banach Spaces, Springer-Verlag, New York Berlin Heidelberg Tokyo, 1984. (1984) MR0737004
  4. 10.1017/S0305004100069401, Math. Proc. Cambridge Philos. Soc. 108 (1990), 523–526. (1990) MR1068453DOI10.1017/S0305004100069401
  5. 10.1090/S0002-9939-1990-1012927-4, Proc. Amer. Math. Soc. 109 (1990), 747–752. (1990) MR1012927DOI10.1090/S0002-9939-1990-1012927-4
  6. On complemented copies of c 0 in spaces of compact operators, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 32 (1992), 29–32. (1992) MR1202755
  7. On complemented copies of c 0 in spaces of compact operators, II, Commentat. Math. Univ. Carol. 35 (1994), 259–261. (1994) MR1286572
  8. When does b v c a Σ , X contain a copy of ?, Math. Scand. 74 (1994), 271–274. (1994) MR1298368
  9. 10.7146/math.scand.a-12555, Math. Scand. 77 (1995), 148–152. (1995) MR1365911DOI10.7146/math.scand.a-12555
  10. 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. (1974) Zbl0266.47038MR0341154DOI10.1007/BF01432152
  11. 10.4064/sm-37-1-13-36, Studia Math. 37 (1979), 13–36. (1979) MR0270122DOI10.4064/sm-37-1-13-36

NotesEmbed ?

top

You must be logged in to post comments.