On the Gauss map of B-scrolls in 3 -dimensional Lorentzian space forms

Angel Ferrández; Pascual Lucas

Czechoslovak Mathematical Journal (2000)

  • Volume: 50, Issue: 4, page 699-704
  • ISSN: 0011-4642

Abstract

top
In this note we show that B -scrolls over null curves in a 3-dimensional Lorentzian space form M ¯ 1 3 ( c ) are characterized as the only ruled surfaces with null rulings whose Gauss maps G satisfy the condition Δ G = Λ G , Λ X ( M ¯ ) X ( M ¯ ) being a parallel endomorphism of X ( M ¯ ) .

How to cite

top

Ferrández, Angel, and Lucas, Pascual. "On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms." Czechoslovak Mathematical Journal 50.4 (2000): 699-704. <http://eudml.org/doc/30595>.

@article{Ferrández2000,
abstract = {In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar\{M\}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:\{X\}(\bar\{M\})\rightarrow \{X\}(\bar\{M\})$ being a parallel endomorphism of $\{X\}(\bar\{M\})$.},
author = {Ferrández, Angel, Lucas, Pascual},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gauss map; $B$-scroll; ruled surfce; Gauss map; -scroll; ruled surface},
language = {eng},
number = {4},
pages = {699-704},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms},
url = {http://eudml.org/doc/30595},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Ferrández, Angel
AU - Lucas, Pascual
TI - On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 699
EP - 704
AB - In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar{M}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:{X}(\bar{M})\rightarrow {X}(\bar{M})$ being a parallel endomorphism of ${X}(\bar{M})$.
LA - eng
KW - Gauss map; $B$-scroll; ruled surfce; Gauss map; -scroll; ruled surface
UR - http://eudml.org/doc/30595
ER -

References

top
  1. 2-type surfaces in 𝕊 1 3 and 1 3 , Tokyo J. Math. 17 (1994), 447–454. (1994) MR1305812
  2. 10.1007/BF01406822, J. Geom. 52 (1995), 10–24. (1995) MR1317251DOI10.1007/BF01406822
  3. 10.21099/tkbjm/1496163588, Tsukuba J. Math. 22 (1998), 371–377. (1998) MR1650749DOI10.21099/tkbjm/1496163588
  4. 10.1017/S0017089500008946, Glasgow Math. J. 34 (1992), 355–359. (1992) MR1181778DOI10.1017/S0017089500008946
  5. 10.21099/tkbjm/1496162870, Tsukuba J. Math. 19 (1995), 285–304. (1995) Zbl0855.53010MR1366636DOI10.21099/tkbjm/1496162870
  6. On flat surfaces in 𝕊 1 3 and 1 3 , Manifolds and Lie Groups, Univ. Notre Dame, Indiana, Birkhäuser, 1981, pp. 71–108. (1981) MR0642853
  7. 10.2140/pjm.1992.152.93, Pacific J. Math. 152 (1992), 93–100. (1992) MR1139974DOI10.2140/pjm.1992.152.93
  8. 10.1090/S0002-9947-1979-0534127-4, Trans. Amer. Math. Soc. 252 (1979), 367–392. (1979) Zbl0415.53041MR0534127DOI10.1090/S0002-9947-1979-0534127-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.