On the Gauss map of B-scrolls in -dimensional Lorentzian space forms
Angel Ferrández; Pascual Lucas
Czechoslovak Mathematical Journal (2000)
- Volume: 50, Issue: 4, page 699-704
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFerrández, Angel, and Lucas, Pascual. "On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms." Czechoslovak Mathematical Journal 50.4 (2000): 699-704. <http://eudml.org/doc/30595>.
@article{Ferrández2000,
abstract = {In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar\{M\}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:\{X\}(\bar\{M\})\rightarrow \{X\}(\bar\{M\})$ being a parallel endomorphism of $\{X\}(\bar\{M\})$.},
author = {Ferrández, Angel, Lucas, Pascual},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gauss map; $B$-scroll; ruled surfce; Gauss map; -scroll; ruled surface},
language = {eng},
number = {4},
pages = {699-704},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms},
url = {http://eudml.org/doc/30595},
volume = {50},
year = {2000},
}
TY - JOUR
AU - Ferrández, Angel
AU - Lucas, Pascual
TI - On the Gauss map of B-scrolls in $3$-dimensional Lorentzian space forms
JO - Czechoslovak Mathematical Journal
PY - 2000
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 4
SP - 699
EP - 704
AB - In this note we show that $B$-scrolls over null curves in a 3-dimensional Lorentzian space form $\bar{M}^3_1(c)$ are characterized as the only ruled surfaces with null rulings whose Gauss maps $G$ satisfy the condition $\Delta G=\Lambda G$, $\Lambda \:{X}(\bar{M})\rightarrow {X}(\bar{M})$ being a parallel endomorphism of ${X}(\bar{M})$.
LA - eng
KW - Gauss map; $B$-scroll; ruled surfce; Gauss map; -scroll; ruled surface
UR - http://eudml.org/doc/30595
ER -
References
top- 2-type surfaces in and , Tokyo J. Math. 17 (1994), 447–454. (1994) MR1305812
- 10.1007/BF01406822, J. Geom. 52 (1995), 10–24. (1995) MR1317251DOI10.1007/BF01406822
- 10.21099/tkbjm/1496163588, Tsukuba J. Math. 22 (1998), 371–377. (1998) MR1650749DOI10.21099/tkbjm/1496163588
- 10.1017/S0017089500008946, Glasgow Math. J. 34 (1992), 355–359. (1992) MR1181778DOI10.1017/S0017089500008946
- 10.21099/tkbjm/1496162870, Tsukuba J. Math. 19 (1995), 285–304. (1995) Zbl0855.53010MR1366636DOI10.21099/tkbjm/1496162870
- On flat surfaces in and , Manifolds and Lie Groups, Univ. Notre Dame, Indiana, Birkhäuser, 1981, pp. 71–108. (1981) MR0642853
- 10.2140/pjm.1992.152.93, Pacific J. Math. 152 (1992), 93–100. (1992) MR1139974DOI10.2140/pjm.1992.152.93
- 10.1090/S0002-9947-1979-0534127-4, Trans. Amer. Math. Soc. 252 (1979), 367–392. (1979) Zbl0415.53041MR0534127DOI10.1090/S0002-9947-1979-0534127-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.