The dimension function of holomorphic spaces of a real submanifold of an almost complex manifold
Fernando Etayo; Mario Fioravanti; Ujué R. Trías
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 1, page 139-141
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topEtayo, Fernando, Fioravanti, Mario, and Trías, Ujué R.. "The dimension function of holomorphic spaces of a real submanifold of an almost complex manifold." Czechoslovak Mathematical Journal 51.1 (2001): 139-141. <http://eudml.org/doc/30621>.
@article{Etayo2001,
abstract = {Let $ M $ be a real submanifold of an almost complex manifold $ (\overline\{M\},\overline\{J\}) $ and let $ H_\{x\}=T_\{x\}M\cap \overline\{J\}(T_\{x\}M) $ be the maximal holomorphic subspace, for each $ x\in M $. We prove that $ c\:M\rightarrow \mathbb \{N\} $, $ c(x)=\dim _\{\mathbb \{R\}\} H_\{x\} $ is upper-semicontinuous.},
author = {Etayo, Fernando, Fioravanti, Mario, Trías, Ujué R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {holomorphic space; submanifold; almost complex; holomorphic space; submanifold; almost complex},
language = {eng},
number = {1},
pages = {139-141},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The dimension function of holomorphic spaces of a real submanifold of an almost complex manifold},
url = {http://eudml.org/doc/30621},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Etayo, Fernando
AU - Fioravanti, Mario
AU - Trías, Ujué R.
TI - The dimension function of holomorphic spaces of a real submanifold of an almost complex manifold
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 1
SP - 139
EP - 141
AB - Let $ M $ be a real submanifold of an almost complex manifold $ (\overline{M},\overline{J}) $ and let $ H_{x}=T_{x}M\cap \overline{J}(T_{x}M) $ be the maximal holomorphic subspace, for each $ x\in M $. We prove that $ c\:M\rightarrow \mathbb {N} $, $ c(x)=\dim _{\mathbb {R}} H_{x} $ is upper-semicontinuous.
LA - eng
KW - holomorphic space; submanifold; almost complex; holomorphic space; submanifold; almost complex
UR - http://eudml.org/doc/30621
ER -
References
top- Geometry of Submanifolds and its Applications, Sci. Univ. Tokyo, 1981. (1981) Zbl0474.53050MR0627323
- Foundations of Differential Geometry, II, Interscience, New York, 1969. (1969)
- Differential Analysis on Complex Manifolds, Springer, New York, 1980. (1980) Zbl0435.32004MR0608414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.