On Pták’s generalization of Hankel operators

Carmen H. Mancera; Pedro José Paúl

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 2, page 323-342
  • ISSN: 0011-4642

Abstract

top
In 1997 Pták defined generalized Hankel operators as follows: Given two contractions T 1 ( 1 ) and T 2 ( 2 ) , an operator X 1 2 is said to be a generalized Hankel operator if T 2 X = X T 1 * and X satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of T 1 and T 2 . This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some T 1 and T 2 , and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.

How to cite

top

Mancera, Carmen H., and Paúl, Pedro José. "On Pták’s generalization of Hankel operators." Czechoslovak Mathematical Journal 51.2 (2001): 323-342. <http://eudml.org/doc/30637>.

@article{Mancera2001,
abstract = {In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in \{\mathcal \{B\}\}(\{\mathcal \{H\}\}_1)$ and $T_2 \in \{\mathcal \{B\}\}(\{\mathcal \{H\}\}_2)$, an operator $X \:\{\mathcal \{H\}\}_1 \rightarrow \{\mathcal \{H\}\}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.},
author = {Mancera, Carmen H., Paúl, Pedro José},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operators; Hankel operators; minimal isometric dilation; Toeplitz operators; Hankel operators; minimal isometric dilation; analytic Hankel symbols},
language = {eng},
number = {2},
pages = {323-342},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Pták’s generalization of Hankel operators},
url = {http://eudml.org/doc/30637},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Mancera, Carmen H.
AU - Paúl, Pedro José
TI - On Pták’s generalization of Hankel operators
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 323
EP - 342
AB - In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal {B}}({\mathcal {H}}_1)$ and $T_2 \in {\mathcal {B}}({\mathcal {H}}_2)$, an operator $X \:{\mathcal {H}}_1 \rightarrow {\mathcal {H}}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.
LA - eng
KW - Toeplitz operators; Hankel operators; minimal isometric dilation; Toeplitz operators; Hankel operators; minimal isometric dilation; analytic Hankel symbols
UR - http://eudml.org/doc/30637
ER -

References

top
  1. Parametrization and Schur algorithm for the integral representation of Hankel forms in 𝕋 3 , Collect. Math. 43 (1992), 253–272. (1992) MR1252735
  2. 10.2307/2374685, Amer. J. Math. 110 (1988), 989–1053. (1988) MR0970119DOI10.2307/2374685
  3. Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, I, J. B.  Conway, B. B.  Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. (1988) Zbl0681.47006MR0958569
  4. 10.4153/CJM-1982-031-1, Canad. J. Math. 34 (1982), 466–483. (1982) MR0658979DOI10.4153/CJM-1982-031-1
  5. The commutative product V 1 * V 2 = V 2 V 1 * for isometries V 1 and V 2 , Indiana Univ. Math. J. 28 (1979), 581–586. (1979) Zbl0428.47019MR0542945
  6. Toeplitz Operators and Related Topics, Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. (1994) MR1300205
  7. 10.1090/S0002-9947-1987-0882716-4, Trans. Amer. Math. Soc. 301 (1987), 813–829. (1987) MR0882716DOI10.1090/S0002-9947-1987-0882716-4
  8. 10.1017/S0305004100051914, Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. (1975) MR0383133DOI10.1017/S0305004100051914
  9. Analysis of Toeplitz Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1990. (1990) MR1071374
  10. Algebraic properties of Toeplitz operators, J.  Reine Angew. Math. 213 (1963), 89–102. (1963) MR0160136
  11. Monogenic inverse semigroups and their C * -algebras, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. (1984) MR0765485
  12. Prolongements des formes de Hankel généralisées et formes de Toeplitz, C.  R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. (1987) MR0903954
  13. 10.2140/pjm.1994.162.277, Pacific J. Math. 162 (1994), 277–285. (1994) MR1251902DOI10.2140/pjm.1994.162.277
  14. 10.1307/mmj/1029005468, Michigan Math. J. 43 (1996), 355–365. (1996) MR1398160DOI10.1307/mmj/1029005468
  15. 10.1090/S0002-9939-1984-0735569-1, Proc. Amer. Math. Soc. 91 (1984), 81–84. (1984) Zbl0521.47010MR0735569DOI10.1090/S0002-9939-1984-0735569-1
  16. Toeplitz operators on H 2 spaces, Trans. Amer. Math. Soc. 112 (1964), 307–317. (1964) MR0163174
  17. 10.1090/S0002-9939-1966-0203464-1, Proc. Amer. Math. Soc. 17 (1966), 413–415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
  18. On the operator equation S * X T = X and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19–32. (1969) Zbl0177.19204MR0250106
  19. Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. (1972) Zbl0247.47001MR0361893
  20. Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Second edition, Chelsea, New York, 1957. (1957) Zbl0079.12404MR1653399
  21. A Hilbert Space Problem Book, Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. (1982) Zbl0496.47001MR0675952
  22. Powers of partial isometries, J.  Math. Mech. 19 (1969/1970), 657–663. (1969/1970) MR0251574
  23. 10.1512/iumj.1981.30.30017, Indiana Univ. Math. J. 30 (1981), 199–233. (1981) Zbl0497.47010MR0604280DOI10.1512/iumj.1981.30.30017
  24. 10.1215/S0012-7094-74-04185-4, Duke Math. J. 41 (1974), 855–864. (1974) MR0361872DOI10.1215/S0012-7094-74-04185-4
  25. Toeplitz operators in infinitely many variables, Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. (1995) MR1421121
  26. Compact and finite rank operators satisfying a Hankel type equation T 2 X = X T 1 * , Integral Equations Operator Theory (to appear), . (to appear) MR1829281
  27. Properties of generalized Toeplitz operators, Integral Equations Operator Theory (to appear), . (to appear) MR1829517
  28. Remarks, examples and spectral properties of generalized Toeplitz operators, Acta Sci. Math. (Szeged) 66 (2000), 737–753. (2000) MR1804222
  29. 10.1007/BF01444721, Math. Ann. 293 (1992), 371-384. (1992) MR1166127DOI10.1007/BF01444721
  30. 10.4153/CMB-1993-045-9, Canad. Math. Bull. 36 (1993), 324–331. (1993) Zbl0792.47029MR1245817DOI10.4153/CMB-1993-045-9
  31. 10.2307/1969670, Ann. Math. 65 (1957), 153–162. (1957) Zbl0077.10605MR0082945DOI10.2307/1969670
  32. Treatise on the Shift Operator, Springer-Verlag, Berlin, Heidelberg and New York, 1986. (1986) MR0827223
  33. 10.1090/S0002-9947-1970-0273449-3, Trans. Amer. Math. Soc. 150 (1970), 529–539. (1970) Zbl0203.45701MR0273449DOI10.1090/S0002-9947-1970-0273449-3
  34. 10.1007/BF01694041, Integral Equations Operator Theory 5 (1982), 244–272. (1982) MR0647702DOI10.1007/BF01694041
  35. Hankel Operators on Hilbert Space, Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. (1982) Zbl0489.47011MR0666699
  36. Factorization of Toeplitz and Hankel operators, Math. Bohem. 122 (1997), 131–145. (1997) MR1460943
  37. Operators of Toeplitz and Hankel type, Acta Sci. Math. (Szeged) 52 (1988), 117–140. (1988) MR0957795
  38. 10.1007/BF01236657, Integral Equations Operator Theory 11 (1988), 128–147. (1988) MR0920738DOI10.1007/BF01236657
  39. Self-adjoint Toeplitz operators, Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. (1966) Zbl0165.47703
  40. Harmonic Analysis of Operators on Hilbert Space, Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. (1970) MR0275190
  41. An application of dilation theory to hyponormal operators, Acta Sci. Math. (Szeged) 37 (1975), 155–159. (1975) MR0383131
  42. Toeplitz type operators and hyponormality, Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. (1983) MR0789650
  43. An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1988. (1988) Zbl0645.46024MR0949693
  44. 10.1016/0022-1236(89)90032-3, J.  Funct. Anal. 83 (1989), 98–120. (1989) Zbl0678.47026MR0993443DOI10.1016/0022-1236(89)90032-3
  45. 10.1006/jfan.1997.3110, J.  Funct. Anal. 149 (1997), 1–24. (1997) Zbl0909.47020MR1471097DOI10.1006/jfan.1997.3110
  46. Operator Theory in Function Spaces, Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. (1990) Zbl0706.47019MR1074007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.