On Pták’s generalization of Hankel operators
Carmen H. Mancera; Pedro José Paúl
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 2, page 323-342
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMancera, Carmen H., and Paúl, Pedro José. "On Pták’s generalization of Hankel operators." Czechoslovak Mathematical Journal 51.2 (2001): 323-342. <http://eudml.org/doc/30637>.
@article{Mancera2001,
abstract = {In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in \{\mathcal \{B\}\}(\{\mathcal \{H\}\}_1)$ and $T_2 \in \{\mathcal \{B\}\}(\{\mathcal \{H\}\}_2)$, an operator $X \:\{\mathcal \{H\}\}_1 \rightarrow \{\mathcal \{H\}\}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.},
author = {Mancera, Carmen H., Paúl, Pedro José},
journal = {Czechoslovak Mathematical Journal},
keywords = {Toeplitz operators; Hankel operators; minimal isometric dilation; Toeplitz operators; Hankel operators; minimal isometric dilation; analytic Hankel symbols},
language = {eng},
number = {2},
pages = {323-342},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Pták’s generalization of Hankel operators},
url = {http://eudml.org/doc/30637},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Mancera, Carmen H.
AU - Paúl, Pedro José
TI - On Pták’s generalization of Hankel operators
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 323
EP - 342
AB - In 1997 Pták defined generalized Hankel operators as follows: Given two contractions $T_1\in {\mathcal {B}}({\mathcal {H}}_1)$ and $T_2 \in {\mathcal {B}}({\mathcal {H}}_2)$, an operator $X \:{\mathcal {H}}_1 \rightarrow {\mathcal {H}}_2$ is said to be a generalized Hankel operator if $T_2X=XT_1^*$ and $X$ satisfies a boundedness condition that depends on the unitary parts of the minimal isometric dilations of $T_1$ and $T_2$. This approach, call it (P), contrasts with a previous one developed by Pták and Vrbová in 1988, call it (PV), based on the existence of a previously defined generalized Toeplitz operator. There seemed to be a strong but somewhat hidden connection between the theories (P) and (PV) and we clarify that connection by proving that (P) is more general than (PV), even strictly more general for some $T_1$ and $T_2$, and by studying when they coincide. Then we characterize the existence of Hankel operators, Hankel symbols and analytic Hankel symbols, solving in this way some open problems proposed by Pták.
LA - eng
KW - Toeplitz operators; Hankel operators; minimal isometric dilation; Toeplitz operators; Hankel operators; minimal isometric dilation; analytic Hankel symbols
UR - http://eudml.org/doc/30637
ER -
References
top- Parametrization and Schur algorithm for the integral representation of Hankel forms in , Collect. Math. 43 (1992), 253–272. (1992) MR1252735
- 10.2307/2374685, Amer. J. Math. 110 (1988), 989–1053. (1988) MR0970119DOI10.2307/2374685
- Bergman spaces and their operators, Surveys of Some Recent Results in Operator Theory, I, J. B. Conway, B. B. Morrel (eds.), Res. Notes Math. vol. 171, Pitman, Boston, London and Melbourne, 1988. (1988) Zbl0681.47006MR0958569
- 10.4153/CJM-1982-031-1, Canad. J. Math. 34 (1982), 466–483. (1982) MR0658979DOI10.4153/CJM-1982-031-1
- The commutative product for isometries and , Indiana Univ. Math. J. 28 (1979), 581–586. (1979) Zbl0428.47019MR0542945
- Toeplitz Operators and Related Topics, Operator Theory: Adv. Appl., vol. 71, Birkhäuser-Verlag, Basel, Berlin and Boston, 1994. (1994) MR1300205
- 10.1090/S0002-9947-1987-0882716-4, Trans. Amer. Math. Soc. 301 (1987), 813–829. (1987) MR0882716DOI10.1090/S0002-9947-1987-0882716-4
- 10.1017/S0305004100051914, Math. Proc. Cambridge Philos. Soc. 78 (1975), 447–450. (1975) MR0383133DOI10.1017/S0305004100051914
- Analysis of Toeplitz Operators, Springer-Verlag, Berlin, Heidelberg and New York, 1990. (1990) MR1071374
- Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963), 89–102. (1963) MR0160136
- Monogenic inverse semigroups and their -algebras, Proc. Roy. Soc. Edinburgh Sect. A 98 (1984), 13–24. (1984) MR0765485
- Prolongements des formes de Hankel généralisées et formes de Toeplitz, C. R. Acad. Sci. Paris, Ser. I 305 (1987), 167–170. (1987) MR0903954
- 10.2140/pjm.1994.162.277, Pacific J. Math. 162 (1994), 277–285. (1994) MR1251902DOI10.2140/pjm.1994.162.277
- 10.1307/mmj/1029005468, Michigan Math. J. 43 (1996), 355–365. (1996) MR1398160DOI10.1307/mmj/1029005468
- 10.1090/S0002-9939-1984-0735569-1, Proc. Amer. Math. Soc. 91 (1984), 81–84. (1984) Zbl0521.47010MR0735569DOI10.1090/S0002-9939-1984-0735569-1
- Toeplitz operators on spaces, Trans. Amer. Math. Soc. 112 (1964), 307–317. (1964) MR0163174
- 10.1090/S0002-9939-1966-0203464-1, Proc. Amer. Math. Soc. 17 (1966), 413–415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
- On the operator equation and related topics, Acta Sci. Math. (Szeged) 30 (1969), 19–32. (1969) Zbl0177.19204MR0250106
- Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. (1972) Zbl0247.47001MR0361893
- Introduction to Hilbert Space and the Theory of Spectral Multiplicity, Second edition, Chelsea, New York, 1957. (1957) Zbl0079.12404MR1653399
- A Hilbert Space Problem Book, Second edition, Springer-Verlag, Berlin, Heidelberg and New York, 1982. (1982) Zbl0496.47001MR0675952
- Powers of partial isometries, J. Math. Mech. 19 (1969/1970), 657–663. (1969/1970) MR0251574
- 10.1512/iumj.1981.30.30017, Indiana Univ. Math. J. 30 (1981), 199–233. (1981) Zbl0497.47010MR0604280DOI10.1512/iumj.1981.30.30017
- 10.1215/S0012-7094-74-04185-4, Duke Math. J. 41 (1974), 855–864. (1974) MR0361872DOI10.1215/S0012-7094-74-04185-4
- Toeplitz operators in infinitely many variables, Topics in Operator Theory, Operator Algebras and Applications (Timisoara, 1994), Rom. Acad., Bucharest, 1995, pp. 147–160. (1995) MR1421121
- Compact and finite rank operators satisfying a Hankel type equation , Integral Equations Operator Theory (to appear), . (to appear) MR1829281
- Properties of generalized Toeplitz operators, Integral Equations Operator Theory (to appear), . (to appear) MR1829517
- Remarks, examples and spectral properties of generalized Toeplitz operators, Acta Sci. Math. (Szeged) 66 (2000), 737–753. (2000) MR1804222
- 10.1007/BF01444721, Math. Ann. 293 (1992), 371-384. (1992) MR1166127DOI10.1007/BF01444721
- 10.4153/CMB-1993-045-9, Canad. Math. Bull. 36 (1993), 324–331. (1993) Zbl0792.47029MR1245817DOI10.4153/CMB-1993-045-9
- 10.2307/1969670, Ann. Math. 65 (1957), 153–162. (1957) Zbl0077.10605MR0082945DOI10.2307/1969670
- Treatise on the Shift Operator, Springer-Verlag, Berlin, Heidelberg and New York, 1986. (1986) MR0827223
- 10.1090/S0002-9947-1970-0273449-3, Trans. Amer. Math. Soc. 150 (1970), 529–539. (1970) Zbl0203.45701MR0273449DOI10.1090/S0002-9947-1970-0273449-3
- 10.1007/BF01694041, Integral Equations Operator Theory 5 (1982), 244–272. (1982) MR0647702DOI10.1007/BF01694041
- Hankel Operators on Hilbert Space, Res. Notes Math., vol. 64, Pitman, Boston, London and Melbourne, 1982. (1982) Zbl0489.47011MR0666699
- Factorization of Toeplitz and Hankel operators, Math. Bohem. 122 (1997), 131–145. (1997) MR1460943
- Operators of Toeplitz and Hankel type, Acta Sci. Math. (Szeged) 52 (1988), 117–140. (1988) MR0957795
- 10.1007/BF01236657, Integral Equations Operator Theory 11 (1988), 128–147. (1988) MR0920738DOI10.1007/BF01236657
- Self-adjoint Toeplitz operators, Summer Institute of Spectral Theory and Statistical Mechanics 1965 (1966), Broohhaven National Laboratory, Upton, N. Y. (1966) Zbl0165.47703
- Harmonic Analysis of Operators on Hilbert Space, Akadémiai Kiadó and North-Holland, Budapest and Amsterdam, 1970. (1970) MR0275190
- An application of dilation theory to hyponormal operators, Acta Sci. Math. (Szeged) 37 (1975), 155–159. (1975) MR0383131
- Toeplitz type operators and hyponormality, Dilation Theory, Toeplitz Operators and Other Topics, Operator Theory: Adv. Appl. vol. 11, Birkhäuser-Verlag, Basel, Berlin and Boston, 1983, pp. 371–378. (1983) MR0789650
- An Introduction to Hilbert Space, Cambridge University Press, Cambridge, 1988. (1988) Zbl0645.46024MR0949693
- 10.1016/0022-1236(89)90032-3, J. Funct. Anal. 83 (1989), 98–120. (1989) Zbl0678.47026MR0993443DOI10.1016/0022-1236(89)90032-3
- 10.1006/jfan.1997.3110, J. Funct. Anal. 149 (1997), 1–24. (1997) Zbl0909.47020MR1471097DOI10.1006/jfan.1997.3110
- Operator Theory in Function Spaces, Pure Appl, Math. vol. 139, Marcel Dekker, Basel and New York, 1990. (1990) Zbl0706.47019MR1074007
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.