A comparison on the commutative neutrix convolution of distributions and the exchange formula
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 3, page 463-471
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKiliçman, Adem. "A comparison on the commutative neutrix convolution of distributions and the exchange formula." Czechoslovak Mathematical Journal 51.3 (2001): 463-471. <http://eudml.org/doc/30648>.
@article{Kiliçman2001,
abstract = {Let $\tilde\{f\}$, $\tilde\{g\}$ be ultradistributions in $\mathcal \{Z\}^\{\prime \}$ and let $\tilde\{f\}_n = \tilde\{f\} * \delta _n$ and $\tilde\{g\}_n = \tilde\{g\} * \sigma _n$ where $\lbrace \delta _n \rbrace $ is a sequence in $\mathcal \{Z\}$ which converges to the Dirac-delta function $\delta $. Then the neutrix product $\tilde\{f\} \diamond \tilde\{g\}$ is defined on the space of ultradistributions $\mathcal \{Z\}^\{\prime \}$ as the neutrix limit of the sequence $\lbrace \{1 \over 2\}(\tilde\{f\}_n \tilde\{g\} + \tilde\{f\} \tilde\{g\}_n)\rbrace $ provided the limit $\tilde\{h\}$ exist in the sense that \[ \mathop \{\mathrm \{N\}\text\{-\}lim\}\_\{n\rightarrow \infty \}\{1 \over 2\} \langle \tilde\{f\}\_n \tilde\{g\} +\tilde\{f\} \tilde\{g\}\_n, \psi \rangle = \langle \tilde\{h\}, \psi \rangle \]
for all $\psi $ in $\mathcal \{Z\}$. We also prove that the neutrix convolution product $f \mathbin \{\diamondsuit \!\!\!\!*\,\}g$ exist in $\mathcal \{D\}^\{\prime \}$, if and only if the neutrix product $\tilde\{f\} \diamond \tilde\{g\}$ exist in $\mathcal \{Z\}^\{\prime \}$ and the exchange formula \[ F(f \mathbin \{\diamondsuit \!\!\!\!*\,\}g) = \tilde\{f\} \diamond \tilde\{g\} \]
is then satisfied.},
author = {Kiliçman, Adem},
journal = {Czechoslovak Mathematical Journal},
keywords = {distributions; ultradistributions; delta-function; neutrix limit; neutrix product; neutrix convolution; exchange formula; distributions; ultradistributions; delta-function; neutrix limit; neutrix product; neutrix convolution; exchange formula},
language = {eng},
number = {3},
pages = {463-471},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A comparison on the commutative neutrix convolution of distributions and the exchange formula},
url = {http://eudml.org/doc/30648},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Kiliçman, Adem
TI - A comparison on the commutative neutrix convolution of distributions and the exchange formula
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 463
EP - 471
AB - Let $\tilde{f}$, $\tilde{g}$ be ultradistributions in $\mathcal {Z}^{\prime }$ and let $\tilde{f}_n = \tilde{f} * \delta _n$ and $\tilde{g}_n = \tilde{g} * \sigma _n$ where $\lbrace \delta _n \rbrace $ is a sequence in $\mathcal {Z}$ which converges to the Dirac-delta function $\delta $. Then the neutrix product $\tilde{f} \diamond \tilde{g}$ is defined on the space of ultradistributions $\mathcal {Z}^{\prime }$ as the neutrix limit of the sequence $\lbrace {1 \over 2}(\tilde{f}_n \tilde{g} + \tilde{f} \tilde{g}_n)\rbrace $ provided the limit $\tilde{h}$ exist in the sense that \[ \mathop {\mathrm {N}\text{-}lim}_{n\rightarrow \infty }{1 \over 2} \langle \tilde{f}_n \tilde{g} +\tilde{f} \tilde{g}_n, \psi \rangle = \langle \tilde{h}, \psi \rangle \]
for all $\psi $ in $\mathcal {Z}$. We also prove that the neutrix convolution product $f \mathbin {\diamondsuit \!\!\!\!*\,}g$ exist in $\mathcal {D}^{\prime }$, if and only if the neutrix product $\tilde{f} \diamond \tilde{g}$ exist in $\mathcal {Z}^{\prime }$ and the exchange formula \[ F(f \mathbin {\diamondsuit \!\!\!\!*\,}g) = \tilde{f} \diamond \tilde{g} \]
is then satisfied.
LA - eng
KW - distributions; ultradistributions; delta-function; neutrix limit; neutrix product; neutrix convolution; exchange formula; distributions; ultradistributions; delta-function; neutrix limit; neutrix product; neutrix convolution; exchange formula
UR - http://eudml.org/doc/30648
ER -
References
top- Introduction to the neutrix calculus, J. Analyse Math. 7 (1959–60), 291–398. (1959–60) MR0124678
- Neutrices and the convolution of distributions, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., Novi Sad 17 (1987), 119–135. (1987) MR0939303
- A commutative neutrix convolution product of distributions, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., Novi Sad (1) 23 (1993), 13–27. (1993) MR1319771
- A commutative neutrix convolution of distributions and exchange formula, Arch. Math. 28 (1992), 187–197. (1992) MR1222286
- Generalized functions, Vol. I, Academic Press, 1964. (1964) MR0166596
- 10.1093/qmath/24.1.145, Quart. J. Math. Oxford Ser. (2) 24 (1973), 145–163. (1973) Zbl0256.46054MR0336325DOI10.1093/qmath/24.1.145
- Topological vector spaces, distributions and kernels, Academic Press, 1970. (1970) MR0225131
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.