Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures

Diomedes Bárcenas

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 493-504
  • ISSN: 0011-4642

Abstract

top
Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.

How to cite

top

Bárcenas, Diomedes. "Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures." Czechoslovak Mathematical Journal 51.3 (2001): 493-504. <http://eudml.org/doc/30651>.

@article{Bárcenas2001,
abstract = {Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.},
author = {Bárcenas, Diomedes},
journal = {Czechoslovak Mathematical Journal},
keywords = {weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures; weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures},
language = {eng},
number = {3},
pages = {493-504},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures},
url = {http://eudml.org/doc/30651},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Bárcenas, Diomedes
TI - Weak compactness criteria for set valued integrals and Radon Nikodym Theorem for vector valued multimeasures
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 493
EP - 504
AB - Some criteria for weak compactness of set valued integrals are given. Also we show some applications to the study of multimeasures on Banach spaces with the Radon-Nikodym property.
LA - eng
KW - weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures; weak compactness; measurable multifunctions; Radon-Nikodym property; multimeasures
UR - http://eudml.org/doc/30651
ER -

References

top
  1. 10.1137/0313052, SIAM, J. Control Optim. 13 (1975), 865–878. (1975) MR0377661DOI10.1137/0313052
  2. Parties décomposables compactes de L E 1 , C. R. Acad. Sci. Paris, Ser. I 294 (1982), 533–536. (1982) MR0679937
  3. 10.1137/S0036141095296005, SIAM, J. Math. Anal. 28 (1997), 1212–1226. (1997) MR1466678DOI10.1137/S0036141095296005
  4. Weak compactness criteria in set valued integration, Laboratorie d’Analyse convex, prepublication 1995/03. Zbl0918.28014
  5. Compacite faible dans lespace des multifuntions integrablements bornees et minimizations, Ann. Mat. Pura Appl. (IV) 140 (1985), 345–364. (1985) MR0807644
  6. Convex Analysis and Measurable Multifunctions, LNM 586, Springer Verlag, Berlin, 1977. (1977) MR0467310
  7. 10.1016/0022-1236(74)90044-5, J. Funct. Anal. 17 (1974), 311–327. (1974) MR0355536DOI10.1016/0022-1236(74)90044-5
  8. 10.1090/S0002-9939-1993-1132408-X, Proc. Amer. Math. Soc. 118 (1993), 443–453. (1993) MR1132408DOI10.1090/S0002-9939-1993-1132408-X
  9. Vector measures, Amer. Math. Soc. Surveys vol.  15, Providence, R.I., 1977. (1977) MR0453964
  10. Some results about multimeasures and their selectors, Measure Theory, D. Kölzow (ed.), LNM 794, Springer-Verlag, Berlin, 1980, pp. 112–116. (1980) Zbl0432.28009MR0577965
  11. 10.2140/pjm.1984.110.65, Pacific J. Math. 110 (1984), 65–70. (1984) MR0722738DOI10.2140/pjm.1984.110.65
  12. 10.1016/0047-259X(78)90022-2, J. Multivariate Anal. 8 (1978), 96–118. (1978) Zbl0384.28006MR0583862DOI10.1016/0047-259X(78)90022-2
  13. 10.1016/0047-259X(77)90037-9, J. Multivariate Anal. 7 (1977), 149–182. (1977) MR0507504DOI10.1016/0047-259X(77)90037-9
  14. A compactness criteria in L 1 ( E ) and Radon-Nikodym theorems for multimeasures, Bull. Soc. Math. 2ê serie 112 (1988), 305–324. (1988) 
  15. On a boundary value problem for quasi-linear differential inclusions of evolution, Collect. Math. 45 (1994), 165–175. (1994) Zbl0824.34017MR1316934
  16. 10.1090/S0002-9947-1987-0906815-3, Trans. Amer. Math. Soc. 304 (1987), 245–265. (1987) Zbl0634.28004MR0906815DOI10.1090/S0002-9947-1987-0906815-3
  17. Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin. 29 (1988), 355–363. (1988) Zbl0696.35074MR0957404
  18. Decomponsable sets in the Lebesgue Bochner spaces, Comment. Math. Univ. St. Paul 37 (1988), 49–62. (1988) MR0942305
  19. Radon-Nikodym theorem for multimeasures and transition multimeasures, Proc. Amer. Math. Soc. 111 (1991), 465–474. (1991) MR1036989
  20. On the convergence properties of measurable multifuntions in a Banach space, Math. Japon. 37 (1992), 637–643. (1992) MR1176035
  21. 10.1090/S0002-9947-1995-1290728-9, Trans. Amer. Math. Soc. 347 (1995), 2495–2515. (1995) MR1290728DOI10.1090/S0002-9947-1995-1290728-9
  22. 10.1073/pnas.71.6.2411, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. (1974) MR0358307DOI10.1073/pnas.71.6.2411
  23. The Radon-Nikodym property in conjugate Banach Spaces II, Trans. Amer. Math. Soc. 264 (1981), 507–519. (1981) Zbl0475.46016MR0603779
  24. Set valued mesures and integral representations, Comment. Math. Univ. Carolin. 37 (1996), 269–284. (1996) MR1399002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.