Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles

F. G. Abdullayev

Czechoslovak Mathematical Journal (2001)

  • Volume: 51, Issue: 3, page 643-660
  • ISSN: 0011-4642

Abstract

top
Let C be the extended complex plane; G C a finite Jordan with 0 G ; w = ϕ ( z ) the conformal mapping of G onto the disk B 0 ; ρ 0 : = w w < ρ 0 normalized by ϕ ( 0 ) = 0 and ϕ ' ( 0 ) = 1 . Let us set ϕ p ( z ) : = 0 z ϕ ' ( ζ ) 2 / p d ζ , and let π n , p ( z ) be the generalized Bieberbach polynomial of degree n for the pair ( G , 0 ) , which minimizes the integral G ϕ p ' ( z ) - P n ' ( z ) p d σ z in the class of all polynomials of degree not exceeding n with P n ( 0 ) = 0 , P n ' ( 0 ) = 1 . In this paper we study the uniform convergence of the generalized Bieberbach polynomials π n , p ( z ) to ϕ p ( z ) on G ¯ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.

How to cite

top

Abdullayev, F. G.. "Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles." Czechoslovak Mathematical Journal 51.3 (2001): 643-660. <http://eudml.org/doc/30661>.

@article{Abdullayev2001,
abstract = {Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( \{0;\rho _\{0\}\}\right):=\{\left\rbrace \{w\:\{\left| \{w\}\right| \}<\rho _\{0\}\} \right\lbrace \}$ normalized by $\varphi (0)=0$ and $\{\varphi \}^\{\prime \}(0)=1$. Let us set $\varphi _\{p\}(z):=\int _\{0\}^\{z\}\{\{\left[ \{\{\varphi \} ^\{\prime \}(\zeta )\}\right] \}^\{\{2\}/\{p\}\}\}\mathrm \{d\}\zeta $, and let $\pi _\{n,p\}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _\{G\}\{\{\left| \{\{\varphi \}_\{p\}^\{\prime \}(z)-\{P\}_\{n\}^\{\prime \}(z)\}\right| \}\}^\{p\}\mathrm \{d\}\sigma _\{z\}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_\{n\}(0)=0$, $\{P\}_\{n\}^\{\prime \}(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _\{n,p\}(z)$ to $\varphi _\{p\}(z)$ on $\overline\{G\}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.},
author = {Abdullayev, F. G.},
journal = {Czechoslovak Mathematical Journal},
keywords = {conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation; conformal mapping; quasiconformal curve; Bieberbach polynomial; complex approximation},
language = {eng},
number = {3},
pages = {643-660},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles},
url = {http://eudml.org/doc/30661},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Abdullayev, F. G.
TI - Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 643
EP - 660
AB - Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm {d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm {d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
LA - eng
KW - conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation; conformal mapping; quasiconformal curve; Bieberbach polynomial; complex approximation
UR - http://eudml.org/doc/30661
ER -

References

top
  1. On the orthogonal polynomials in domains with quasiconformal boundary, Dissertation, Donetsk (1986). (Russian) (1986) 
  2. On the convergence of Bieberbach polynomials in domains with interior zero angles, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3–5. (Russian) (1989) MR2209974
  3. On the convergence of Fourier series by orthogonal polynomials in domains with piecevise-quasiconformal boundary, Theory of Mappings and Approximation, Naukova Dumka, Kiev, 1989, pp. 3–12. (1989) 
  4. 10.1023/A:1006590814228, Acta Math. Hungar. 77 (1997), 223–246. (1997) Zbl0904.41003MR1485847DOI10.1023/A:1006590814228
  5. On the convergence of Bieberbach polynomials in domains with interior zero angles, Complex Anal. Theor. & Appl. 34 (2001). (2001) MR1908583
  6. On the uniform convergence of the generalized Bieberbach polynomials in regions with quasiconformal boundary, (to appear). (to appear) 
  7. Lectures on Quasiconformal Mappings, Princeton, NJ: Van Nostrand, 1966. (1966) Zbl0138.06002MR0200442
  8. Uniform convergence of Bieberbach polynomials in domains with zero angles, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3–5. (Russian) (1982) MR0659928
  9. Uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary, Theory of Mappings and Approximation of Functions, Kiev, Naukova Dumka, 1983, pp. 3–18. (Russian) (1983) MR0731089
  10. 10.1007/BF01092167, Trans. Ukrainian Math. J. 35 (1984), 233–236. (1984) DOI10.1007/BF01092167
  11. 10.1070/SM1977v031n03ABEH002304, Math. USSR-Sb. 31 (1977), 289–317. (1977) Zbl0388.30007DOI10.1070/SM1977v031n03ABEH002304
  12. 10.1007/BF01061436, Ukrain. Mat. Zh. 45 (1993), 763–769. (1993) MR1299962DOI10.1007/BF01061436
  13. Interpolation and Approximation, Blaisdell Publishing Company, 1963. (1963) Zbl0111.06003MR0157156
  14. 10.1007/BF02075463, Constr. Approx. 4 (1988), 289–305. (1988) Zbl0645.30002MR0940296DOI10.1007/BF02075463
  15. 10.1007/BF01190116, Arch. Math. 58 (1992), 462–470. (1992) Zbl0723.30008MR1156578DOI10.1007/BF01190116
  16. On the approximation properties of extremal polynomials, Dep. VINITI, No. 5461 (1981). (Russian) (1981) MR0648384
  17. Sur l’approximation en moyenne quadratique des fonctions analytiques, Math. Sb. 5(47) (1939), 391–401. (1939) MR0002591
  18. 10.1070/IM1980v015n02ABEH001240, Math. USSR-Izv. 15 (1980), 349–371. (1980) Zbl0443.30049MR0552553DOI10.1070/IM1980v015n02ABEH001240
  19. Quasiconformal mappings in the plane, Springer-Verlag, Berlin, 1973. (1973) MR0344463
  20. Certain questions of the constructive theory of functions, Trudy Math. Inst. Steklov 37 (1951). (Russian) (1951) MR0049390
  21. Univalent Functions, Göttingen, 1975. (1975) Zbl0298.30014MR0507768
  22. Introduction to the theory of functions of a complex variable, Nauka, Moscow, 1984. (1984) Zbl0571.30001MR0779289
  23. Functions of a Complex Variable. Constructive Theory, The M.I.T. PRESS, 1968. (1968) MR0229803
  24. 10.1070/IM1979v013n01ABEH002017, Math. USSR-Izv. 13 (1980), 166–174. (1980) DOI10.1070/IM1979v013n01ABEH002017
  25. Polynomials orthogonal over a region and Bieberbach polynomials, Proc. Steklov Inst. Math. 100 (1971), Providence, Rhode Island: Amer. Math. Soc., 1974. (1974) Zbl0282.30034MR0463793
  26. Smoothness and Polynomial Approximation, Naukova Dumka, Kiev, 1975. (Russian) (1975) 
  27. Real variables, Calif. Addison-Wesley, 1988. (1988) 
  28. Interpolation and approximation by rational functions in the complex domain, Moscow, 1961. (Russian) (1961) Zbl0106.28103MR0218586
  29. On Bieberbach polynomials, Acta Math. Sinica 13 (1963), 145–151. (1963) Zbl0154.07004MR0168744

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.