Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 3, page 643-660
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbdullayev, F. G.. "Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles." Czechoslovak Mathematical Journal 51.3 (2001): 643-660. <http://eudml.org/doc/30661>.
@article{Abdullayev2001,
abstract = {Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( \{0;\rho _\{0\}\}\right):=\{\left\rbrace \{w\:\{\left| \{w\}\right| \}<\rho _\{0\}\} \right\lbrace \}$ normalized by $\varphi (0)=0$ and $\{\varphi \}^\{\prime \}(0)=1$. Let us set $\varphi _\{p\}(z):=\int _\{0\}^\{z\}\{\{\left[ \{\{\varphi \} ^\{\prime \}(\zeta )\}\right] \}^\{\{2\}/\{p\}\}\}\mathrm \{d\}\zeta $, and let $\pi _\{n,p\}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _\{G\}\{\{\left| \{\{\varphi \}_\{p\}^\{\prime \}(z)-\{P\}_\{n\}^\{\prime \}(z)\}\right| \}\}^\{p\}\mathrm \{d\}\sigma _\{z\}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_\{n\}(0)=0$, $\{P\}_\{n\}^\{\prime \}(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _\{n,p\}(z)$ to $\varphi _\{p\}(z)$ on $\overline\{G\}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.},
author = {Abdullayev, F. G.},
journal = {Czechoslovak Mathematical Journal},
keywords = {conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation; conformal mapping; quasiconformal curve; Bieberbach polynomial; complex approximation},
language = {eng},
number = {3},
pages = {643-660},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles},
url = {http://eudml.org/doc/30661},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Abdullayev, F. G.
TI - Uniform convergence of the generalized Bieberbach polynomials in regions with zero angles
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 643
EP - 660
AB - Let $C$ be the extended complex plane; $G\subset C$ a finite Jordan with $ 0\in G$; $w=\varphi (z)$ the conformal mapping of $G$ onto the disk $ B\left( {0;\rho _{0}}\right):={\left\rbrace {w\:{\left| {w}\right| }<\rho _{0}} \right\lbrace }$ normalized by $\varphi (0)=0$ and ${\varphi }^{\prime }(0)=1$. Let us set $\varphi _{p}(z):=\int _{0}^{z}{{\left[ {{\varphi } ^{\prime }(\zeta )}\right] }^{{2}/{p}}}\mathrm {d}\zeta $, and let $\pi _{n,p}(z)$ be the generalized Bieberbach polynomial of degree $n$ for the pair $(G,0)$, which minimizes the integral $ \iint \limits _{G}{{\left| {{\varphi }_{p}^{\prime }(z)-{P}_{n}^{\prime }(z)}\right| }}^{p}\mathrm {d}\sigma _{z}$ in the class of all polynomials of degree not exceeding $\le n$ with $P_{n}(0)=0$, ${P}_{n}^{\prime }(0)=1$. In this paper we study the uniform convergence of the generalized Bieberbach polynomials $\pi _{n,p}(z)$ to $\varphi _{p}(z)$ on $\overline{G}$ with interior and exterior zero angles and determine its dependence on the properties of boundary arcs and the degree of their tangency.
LA - eng
KW - conformal mapping; Quasiconformal curve; Bieberbach polynomials; complex approximation; conformal mapping; quasiconformal curve; Bieberbach polynomial; complex approximation
UR - http://eudml.org/doc/30661
ER -
References
top- On the orthogonal polynomials in domains with quasiconformal boundary, Dissertation, Donetsk (1986). (Russian) (1986)
- On the convergence of Bieberbach polynomials in domains with interior zero angles, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A 12 (1989), 3–5. (Russian) (1989) MR2209974
- On the convergence of Fourier series by orthogonal polynomials in domains with piecevise-quasiconformal boundary, Theory of Mappings and Approximation, Naukova Dumka, Kiev, 1989, pp. 3–12. (1989)
- 10.1023/A:1006590814228, Acta Math. Hungar. 77 (1997), 223–246. (1997) Zbl0904.41003MR1485847DOI10.1023/A:1006590814228
- On the convergence of Bieberbach polynomials in domains with interior zero angles, Complex Anal. Theor. & Appl. 34 (2001). (2001) MR1908583
- On the uniform convergence of the generalized Bieberbach polynomials in regions with quasiconformal boundary, (to appear). (to appear)
- Lectures on Quasiconformal Mappings, Princeton, NJ: Van Nostrand, 1966. (1966) Zbl0138.06002MR0200442
- Uniform convergence of Bieberbach polynomials in domains with zero angles, Dokl. Akad. Nauk. Ukrain. SSR, Ser. A (1982), 3–5. (Russian) (1982) MR0659928
- Uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary, Theory of Mappings and Approximation of Functions, Kiev, Naukova Dumka, 1983, pp. 3–18. (Russian) (1983) MR0731089
- 10.1007/BF01092167, Trans. Ukrainian Math. J. 35 (1984), 233–236. (1984) DOI10.1007/BF01092167
- 10.1070/SM1977v031n03ABEH002304, Math. USSR-Sb. 31 (1977), 289–317. (1977) Zbl0388.30007DOI10.1070/SM1977v031n03ABEH002304
- 10.1007/BF01061436, Ukrain. Mat. Zh. 45 (1993), 763–769. (1993) MR1299962DOI10.1007/BF01061436
- Interpolation and Approximation, Blaisdell Publishing Company, 1963. (1963) Zbl0111.06003MR0157156
- 10.1007/BF02075463, Constr. Approx. 4 (1988), 289–305. (1988) Zbl0645.30002MR0940296DOI10.1007/BF02075463
- 10.1007/BF01190116, Arch. Math. 58 (1992), 462–470. (1992) Zbl0723.30008MR1156578DOI10.1007/BF01190116
- On the approximation properties of extremal polynomials, Dep. VINITI, No. 5461 (1981). (Russian) (1981) MR0648384
- Sur l’approximation en moyenne quadratique des fonctions analytiques, Math. Sb. 5(47) (1939), 391–401. (1939) MR0002591
- 10.1070/IM1980v015n02ABEH001240, Math. USSR-Izv. 15 (1980), 349–371. (1980) Zbl0443.30049MR0552553DOI10.1070/IM1980v015n02ABEH001240
- Quasiconformal mappings in the plane, Springer-Verlag, Berlin, 1973. (1973) MR0344463
- Certain questions of the constructive theory of functions, Trudy Math. Inst. Steklov 37 (1951). (Russian) (1951) MR0049390
- Univalent Functions, Göttingen, 1975. (1975) Zbl0298.30014MR0507768
- Introduction to the theory of functions of a complex variable, Nauka, Moscow, 1984. (1984) Zbl0571.30001MR0779289
- Functions of a Complex Variable. Constructive Theory, The M.I.T. PRESS, 1968. (1968) MR0229803
- 10.1070/IM1979v013n01ABEH002017, Math. USSR-Izv. 13 (1980), 166–174. (1980) DOI10.1070/IM1979v013n01ABEH002017
- Polynomials orthogonal over a region and Bieberbach polynomials, Proc. Steklov Inst. Math. 100 (1971), Providence, Rhode Island: Amer. Math. Soc., 1974. (1974) Zbl0282.30034MR0463793
- Smoothness and Polynomial Approximation, Naukova Dumka, Kiev, 1975. (Russian) (1975)
- Real variables, Calif. Addison-Wesley, 1988. (1988)
- Interpolation and approximation by rational functions in the complex domain, Moscow, 1961. (Russian) (1961) Zbl0106.28103MR0218586
- On Bieberbach polynomials, Acta Math. Sinica 13 (1963), 145–151. (1963) Zbl0154.07004MR0168744
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.