Complete distributivity of lattice ordered groups and of vector lattices
Czechoslovak Mathematical Journal (2001)
- Volume: 51, Issue: 4, page 889-896
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJakubík, Ján. "Complete distributivity of lattice ordered groups and of vector lattices." Czechoslovak Mathematical Journal 51.4 (2001): 889-896. <http://eudml.org/doc/30678>.
@article{Jakubík2001,
abstract = {In this paper we investigate the possibility of a regular embedding of a lattice ordered group into a completely distributive vector lattice.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {lattice ordered group; vector lattice; complete distributivity; regular embedding; lattice ordered group; vector lattice; complete distributivity; regular embedding},
language = {eng},
number = {4},
pages = {889-896},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complete distributivity of lattice ordered groups and of vector lattices},
url = {http://eudml.org/doc/30678},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Jakubík, Ján
TI - Complete distributivity of lattice ordered groups and of vector lattices
JO - Czechoslovak Mathematical Journal
PY - 2001
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 4
SP - 889
EP - 896
AB - In this paper we investigate the possibility of a regular embedding of a lattice ordered group into a completely distributive vector lattice.
LA - eng
KW - lattice ordered group; vector lattice; complete distributivity; regular embedding; lattice ordered group; vector lattice; complete distributivity; regular embedding
UR - http://eudml.org/doc/30678
ER -
References
top- Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc. 15 (1965), 599–631. (1965) MR0182661
- Lattice Theory. Revised Edition, American Mathematical Society, Providence, 1948. (1948) MR0029876
- Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
- 10.1017/S1446788700005760, J. Austral. Math. Soc. 9 (1969), 182–208. (1969) MR0249340DOI10.1017/S1446788700005760
- Representation and extension of -groups, Czechoslovak Math. J. 13 (1963), 267–283. (Russian) (1963) MR0171865
- Konvexe Ketten in -Gruppen, Časopis pěst. matem. 84 (1959), 53–63. (1959) MR0104740
- Die Dedekindschen Schnitte im direkten Product von halbgeordneten Gruppen, Mat. fyz. časopis Slovenskej akad. vied 16 (1966), 329–336. (1966) MR0210638
- Distributivity in lattice ordered groups, Czechoslovak Math. J. 22 (1972), 108–125. (1972) MR0325487
- Functional Analysis in Semiordered Spaces, Moskva, 1950. (Russian) (1950)
- Embedding of Archimedean -groups in Riesz spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 249–254. (1998) MR1628633
- Riesz Spaces, Vol. 1, North-Holland Publishing Company, Amsterdam, 1971. (1971) MR0511676
- 10.32917/hmj/1558306491, J. Hiroshima Univ., Ser. A 12 (1942), 17–35. (1942) MR0029087DOI10.32917/hmj/1558306491
- 10.2140/pjm.1957.7.983, Pacific. J. Math. 7 (1957), 983–992. (1957) Zbl0086.02803MR0089180DOI10.2140/pjm.1957.7.983
- Extensions of semiordered groups and spaces, Uch. Zap. Leningrad. Gos. Ped. Inst. 86 (1949), 285–315. (Russian) (1949)
- 10.2140/pjm.1976.63.247, Pacific. J. Math. 63 (1976), 247–253. (1976) Zbl0324.06007MR0412074DOI10.2140/pjm.1976.63.247
- Boolean Algebras, Second Edition, Springer Verlag, Berlin, 1964. (1964) Zbl0123.01303MR0177920
- 10.1090/S0002-9947-1957-0084466-4, Trans. Amer. Math. Soc. 84 (1957), 230–257. (1957) MR0084466DOI10.1090/S0002-9947-1957-0084466-4
- Introduction to the Theory of Semiordered Spaces, (In Russian; English translation: Introduction to the Theory of Partially Ordered Spaces, Groningen 1967), Moskva, 1961. (1961)
- On the representation of the vector lattice, Proc. Acad. Tokyo 18 (1942), 339–342. (1942) Zbl0063.09070MR0015378
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.