Almost periodic compactifications of group extensions
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 2, page 237-254
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJunghenn, H. D., and Milnes, Paul. "Almost periodic compactifications of group extensions." Czechoslovak Mathematical Journal 52.2 (2002): 237-254. <http://eudml.org/doc/30696>.
@article{Junghenn2002,
abstract = {Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property $\mathcal \{P\}$ of group compactifications, one can ask whether there exist compactifications $N^\{\prime \}$ and $K^\{\prime \}$ of $N$ and $K$ such that the universal $\mathcal \{P\}$-compactification of $G$ is canonically isomorphic to an extension of $N^\{\prime \}$ by $K^\{\prime \}$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal \{P\}$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$.},
author = {Junghenn, H. D., Milnes, Paul},
journal = {Czechoslovak Mathematical Journal},
keywords = {group extension; semidirect product; topological group; semitopological semigroup; right topological semigroup; compactification; almost periodic; weakly almost periodic; strongly almost periodic; group extension; semidirect product; topological group; compactification; almost periodic},
language = {eng},
number = {2},
pages = {237-254},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Almost periodic compactifications of group extensions},
url = {http://eudml.org/doc/30696},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Junghenn, H. D.
AU - Milnes, Paul
TI - Almost periodic compactifications of group extensions
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 237
EP - 254
AB - Let $N$ and $K$ be groups and let $G$ be an extension of $N$ by $K$. Given a property $\mathcal {P}$ of group compactifications, one can ask whether there exist compactifications $N^{\prime }$ and $K^{\prime }$ of $N$ and $K$ such that the universal $\mathcal {P}$-compactification of $G$ is canonically isomorphic to an extension of $N^{\prime }$ by $K^{\prime }$. We prove a theorem which gives necessary and sufficient conditions for this to occur for general properties $\mathcal {P}$ and then apply this result to the almost periodic and weakly almost periodic compactifications of $G$.
LA - eng
KW - group extension; semidirect product; topological group; semitopological semigroup; right topological semigroup; compactification; almost periodic; weakly almost periodic; strongly almost periodic; group extension; semidirect product; topological group; compactification; almost periodic
UR - http://eudml.org/doc/30696
ER -
References
top- Analysis on Semigroups: Function Spaces, Compactifications, Representations, Wiley, New York, 1989. (1989) MR0999922
- 10.1007/BF02559536, Acta Math. 105 (1961), 99–140. (1961) MR0131785DOI10.1007/BF02559536
- 10.1090/S0002-9947-1981-0610956-2, Trans. Amer. Math. Soc. 265 (1981), 393–404. (1981) MR0610956DOI10.1090/S0002-9947-1981-0610956-2
- 10.1216/rmjm/1181071687, Rocky Mountain Math. J. 29 (1999), 209–227. (1999) MR1687663DOI10.1216/rmjm/1181071687
- 10.1007/BF01112609, Math. Z. 127 (1972), 167–178. (1972) Zbl0236.54030MR0310853DOI10.1007/BF01112609
- 10.1017/S030500410007273X, Math. Proc. Camb. Phil. Soc. 116 (1994), 451–463. (1994) MR1291752DOI10.1017/S030500410007273X
- 10.4064/cm-44-1-125-136, Coll. Math. 44 (1981), 125–136. (1981) Zbl0482.43005MR0633106DOI10.4064/cm-44-1-125-136
- 10.2140/pjm.1981.93.415, Pacific J. Math. 93 (1981), 415–429. (1981) Zbl0499.46039MR0623572DOI10.2140/pjm.1981.93.415
- 10.1007/BF01694897, Monatsh. Math. Phys. 34 (1926), 165–180. (1926) MR1549403DOI10.1007/BF01694897
- Group Theory, Prentice Hall, Englewood Cliffs, N. J., 1964. (1964) Zbl0126.04504MR0167513
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.