The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 2, page 429-437
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFederson, Márcia. "The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals." Czechoslovak Mathematical Journal 52.2 (2002): 429-437. <http://eudml.org/doc/30712>.
@article{Federson2002,
abstract = {We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R\{\mathrm \{d\}\}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb \{R\}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm \{d\}f(t)$, as well as to unbounded intervals $R$.},
author = {Federson, Márcia},
journal = {Czechoslovak Mathematical Journal},
keywords = {Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces; monotone convergence theorem; Kurzweil vector integral; ordered normed spaces},
language = {eng},
number = {2},
pages = {429-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals},
url = {http://eudml.org/doc/30712},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Federson, Márcia
TI - The monotone convergence theorem for multidimensional abstract Kurzweil vector integrals
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 429
EP - 437
AB - We prove two versions of the Monotone Convergence Theorem for the vector integral of Kurzweil, $\int _R{\mathrm {d}}\alpha (t) f(t)$, where $R$ is a compact interval of $\mathbb {R}^n$, $\alpha $ and $f$ are functions with values on $L(Z,W)$ and $Z$ respectively, and $Z$ and $W$ are monotone ordered normed spaces. Analogous results can be obtained for the Kurzweil vector integral, $\int _R\alpha (t)\mathrm {d}f(t)$, as well as to unbounded intervals $R$.
LA - eng
KW - Monotone Convergence Theorem; Kurzweil vector integral; ordered normed spaces; monotone convergence theorem; Kurzweil vector integral; ordered normed spaces
UR - http://eudml.org/doc/30712
ER -
References
top- Integration of functions on Banach spaces, Trans. Amer. Math. Soc. 38 (1935), 357–378. (1935) MR1501815
- Normed Linear Spaces, Springer-Verlag, 1973. (1973) Zbl0268.46013MR0344849
- The Fundamental Theorem of Calculus for the multidimensional Banach space-valued Henstock vector integral, Real Anal. Exchange 25 (2000), 469–480. (2000) MR1758903
- 10.4153/CJM-1968-010-5, Canad. J. Math. 20 (1968), 79–87. (1968) Zbl0171.01804MR0219675DOI10.4153/CJM-1968-010-5
- On a remarkable differential characterization of the functions that are Kurzweil-Henstock integrals, Seminário Brasileiro de Análise 33 (1991), 331–341. (1991)
- -Algebras and Operator Theory, Academic Press, 1990. (1990) Zbl0714.46041MR1074574
- Abstract Perron-Stieltjes integral, Math. Bohem. 121 (1996), 425–447. (1996) Zbl0879.28021MR1428144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.