# A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals

Czechoslovak Mathematical Journal (2002)

- Volume: 52, Issue: 3, page 531-536
- ISSN: 0011-4642

## Access Full Article

top## Abstract

top## How to cite

topFong, C. K.. "A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals." Czechoslovak Mathematical Journal 52.3 (2002): 531-536. <http://eudml.org/doc/30721>.

@article{Fong2002,

abstract = {We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.},

author = {Fong, C. K.},

journal = {Czechoslovak Mathematical Journal},

keywords = {Pettis integrability; HK-integrals; Saks-Henstock’s property; Pettis integrability; Henstock-Kurzweil integrals; Saks-Henstock property; Orlicz-Pettis theorem},

language = {eng},

number = {3},

pages = {531-536},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals},

url = {http://eudml.org/doc/30721},

volume = {52},

year = {2002},

}

TY - JOUR

AU - Fong, C. K.

TI - A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals

JO - Czechoslovak Mathematical Journal

PY - 2002

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 52

IS - 3

SP - 531

EP - 536

AB - We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.

LA - eng

KW - Pettis integrability; HK-integrals; Saks-Henstock’s property; Pettis integrability; Henstock-Kurzweil integrals; Saks-Henstock property; Orlicz-Pettis theorem

UR - http://eudml.org/doc/30721

ER -

## References

top- 10.2307/2974874, Amer. Math. Monthly 103 (1996), 625–632. (1996) Zbl0884.26007MR1413583DOI10.2307/2974874
- Normed Linear Spaces, Academic Press Inc., New York, 1962. (1962) Zbl0100.10802MR0145316
- Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984. (1984) MR0737004
- Vector Measures. Mathematical Surveys, No. 15, Amer. Math. Soc., Providence, 1997. (1997) MR0453964
- The General Theory of Integration, Clarendon Press, Oxford, 1991. (1991) Zbl0745.26006MR1134656
- The Riemann Approach to Integration. Cambridge Tracts in Mathematics, No. 109, Cambridge University Press, Cambridge, 1993. (1993) MR1268404
- Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970. (1970) Zbl0207.13501MR0290095
- Abstract Bochner and McShane Integrals, Ann. Math. Sil. 1564(10) (1996), 21–56. (1996) Zbl0868.28005MR1399609

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.