The type set for some measures on 2 n with n -dimensional support

E. Ferreyra; T. Godoy; Marta Urciuolo

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 3, page 575-583
  • ISSN: 0011-4642

Abstract

top
Let ϕ 1 , , ϕ n be real homogeneous functions in C ( n - { 0 } ) of degree k 2 , let ϕ ( x ) = ( ϕ 1 ( x ) , , ϕ n ( x ) ) and let μ be the Borel measure on 2 n given by μ ( E ) = n χ E ( x , ϕ ( x ) ) | x | γ - n d x where d x denotes the Lebesgue measure on n and γ > 0 . Let T μ be the convolution operator T μ f ( x ) = ( μ * f ) ( x ) and let E μ = { ( 1 / p , 1 / q ) T μ p , q < , 1 p , q } . Assume that, for x 0 , the following two conditions hold: det ( d 2 ϕ ( x ) h ) vanishes only at h = 0 and det ( d ϕ ( x ) ) 0 . In this paper we show that if γ > n ( k + 1 ) / 3 then E μ is the empty set and if γ n ( k + 1 ) / 3 then E μ is the closed segment with endpoints D = 1 - γ n ( k + 1 ) , 1 - 2 γ n ( k + 1 ) and D ' = 2 γ n ( 1 + k ) , γ n ( 1 + k ) . Also, we give some examples.

How to cite

top

Ferreyra, E., Godoy, T., and Urciuolo, Marta. "The type set for some measures on $\mathbb {R}^{2n}$ with $n$-dimensional support." Czechoslovak Mathematical Journal 52.3 (2002): 575-583. <http://eudml.org/doc/30726>.

@article{Ferreyra2002,
abstract = {Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb \{R\}^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb \{R\}^\{2n\}$ given by \[ \mu (E) =\int \_\{\mathbb \{R\}^n\}\chi \_E(x,\varphi (x))\, |x|^\{\gamma -n\}\mathrm \{d\}x \] where $\mathrm \{d\}x$ denotes the Lebesgue measure on $\mathbb \{R\}^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E\_\mu =\lbrace (1/p,1/q)\:\Vert T\_\mu \Vert \_\{p,q\}<\infty ,\hspace\{5.0pt\}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det (\{\mathrm \{d\}\}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det (\{\mathrm \{d\}\} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac\{\gamma \}\{n(k+1)\},1-\frac\{2\gamma \}\{n(k+1)\}\bigr )$ and $D^\{\prime \}=\bigl (\frac\{2\gamma \}\{n(1+k)\},\frac\{\gamma \}\{n(1+k)\}\bigr )$. Also, we give some examples.},
author = {Ferreyra, E., Godoy, T., Urciuolo, Marta},
journal = {Czechoslovak Mathematical Journal},
keywords = {singular measures; convolution operators; singular measures; convolution operators},
language = {eng},
number = {3},
pages = {575-583},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The type set for some measures on $\mathbb \{R\}^\{2n\}$ with $n$-dimensional support},
url = {http://eudml.org/doc/30726},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Ferreyra, E.
AU - Godoy, T.
AU - Urciuolo, Marta
TI - The type set for some measures on $\mathbb {R}^{2n}$ with $n$-dimensional support
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 575
EP - 583
AB - Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb {R}^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb {R}^{2n}$ given by \[ \mu (E) =\int _{\mathbb {R}^n}\chi _E(x,\varphi (x))\, |x|^{\gamma -n}\mathrm {d}x \] where $\mathrm {d}x$ denotes the Lebesgue measure on $\mathbb {R}^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E_\mu =\lbrace (1/p,1/q)\:\Vert T_\mu \Vert _{p,q}<\infty ,\hspace{5.0pt}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det ({\mathrm {d}}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det ({\mathrm {d}} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac{\gamma }{n(k+1)},1-\frac{2\gamma }{n(k+1)}\bigr )$ and $D^{\prime }=\bigl (\frac{2\gamma }{n(1+k)},\frac{\gamma }{n(1+k)}\bigr )$. Also, we give some examples.
LA - eng
KW - singular measures; convolution operators; singular measures; convolution operators
UR - http://eudml.org/doc/30726
ER -

References

top
  1. Endpoint bounds for singular fractional integral operators, UCLA Preprint (1988). (1988) MR0951506
  2. 10.1017/S0305004100070201, Math. Proc. Camb. Phil. Soc. 110 (1991), 151–159. (1991) MR1104610DOI10.1017/S0305004100070201
  3. 10.1023/A:1013795825882, Acta Math. Hungar 92 (2001), 27–38. (2001) MR1924246DOI10.1023/A:1013795825882
  4. 10.1090/S0002-9939-1987-0866429-6, Proc. Amer. Math. Soc. 99 (1987), 56–60. (1987) Zbl0613.43002MR0866429DOI10.1090/S0002-9939-1987-0866429-6
  5. Limitatezza L p - L q per operatori di convoluzione definiti da misure singolari in R n , Bollettino U.M.I. 7 11-A (1997), 237–252. (1997) 
  6. 10.7146/math.scand.a-18275, Math. Scand. 85 (1999), 259–270. (1999) MR1724238DOI10.7146/math.scand.a-18275
  7. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. (1970) Zbl0207.13501MR0290095
  8. Harmonic Analysis. Real Variable Methods, Orthogonality and Oscillatory Integrals, Princeton University Press, 1993. (1993) Zbl0821.42001MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.