Primary elements in Prüfer lattices

C. Jayaram

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 3, page 585-593
  • ISSN: 0011-4642

Abstract

top
In this paper we study primary elements in Prüfer lattices and characterize α -lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.

How to cite

top

Jayaram, C.. "Primary elements in Prüfer lattices." Czechoslovak Mathematical Journal 52.3 (2002): 585-593. <http://eudml.org/doc/30727>.

@article{Jayaram2002,
abstract = {In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.},
author = {Jayaram, C.},
journal = {Czechoslovak Mathematical Journal},
keywords = {principal element; primary element; Prüfer lattice; principal element; primary element; Prüfer lattice},
language = {eng},
number = {3},
pages = {585-593},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Primary elements in Prüfer lattices},
url = {http://eudml.org/doc/30727},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Jayaram, C.
TI - Primary elements in Prüfer lattices
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 585
EP - 593
AB - In this paper we study primary elements in Prüfer lattices and characterize $\alpha $-lattices in terms of Prüfer lattices. Next we study weak ZPI-lattices and characterize almost principal element lattices and principal element lattices in terms of ZPI-lattices.
LA - eng
KW - principal element; primary element; Prüfer lattice; principal element; primary element; Prüfer lattice
UR - http://eudml.org/doc/30727
ER -

References

top
  1. 10.1007/BF02485825, Algebra Universalis 6 (1976), 131–145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
  2. 10.2140/pjm.1976.66.15, Pacific J. Math. 66 (1976), 15–22. (1976) MR0435062DOI10.2140/pjm.1976.66.15
  3. Bear lattices, Acta. Sci. Math. (Szeged) 59 (1994), 61–74. (1994) MR1285430
  4. 10.1007/BF01236764, Algebra Universalis 36 (1996), 392–404. (1996) MR1408734DOI10.1007/BF01236764
  5. Principal element lattices, Czechoslovak Math.  J. 46(121) (1996), 99–109. (1996) MR1371692
  6. Prüfer rings, Math. Z. 95 (1967), 196–211. (1967) MR0209271
  7. 10.2140/pjm.1962.12.481, Pacific J. Math. 12 (1962), 481–498. (1962) Zbl0111.04104MR0143781DOI10.2140/pjm.1962.12.481
  8. 10.1155/S0161171295000676, Internat. J. Math. Math. Sci. 18 (1995), 535–538. (1995) MR1331954DOI10.1155/S0161171295000676
  9. 10.1007/BF01882195, Period. Math. Hungar. 31 (1995), 201–208. (1995) MR1610262DOI10.1007/BF01882195
  10. 10.1007/BF01876351, Period. Math. Hungar. 31 (1995), 33–42. (1995) MR1349291DOI10.1007/BF01876351
  11. Primary elements and prime power elements in multiplicative lattices, Tamkang J. Math. 27 (1996), 111–116. (1996) MR1407005
  12. Dedekind lattices, Acta. Sci. Math. (Szeged) 63 (1997), 367–378. (1997) MR1480486
  13. 10.1023/A:1022475220032, Czechoslovak Math.  J. 48(123) (1998), 641–651. (1998) MR1658225DOI10.1023/A:1022475220032
  14. 10.2140/pjm.1969.28.561, Pacific J. Math. 28 (1969), 561–564. (1969) MR0255456DOI10.2140/pjm.1969.28.561
  15. 10.1007/BF02410800, Ann. Math. Pura. Appl. 82 (1969), 267–274. (1969) Zbl0216.05103MR0248124DOI10.1007/BF02410800

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.