Bernstein-type operators on the half line
Antonio Attalienti; Michele Campiti
Czechoslovak Mathematical Journal (2002)
- Volume: 52, Issue: 4, page 851-860
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAttalienti, Antonio, and Campiti, Michele. "Bernstein-type operators on the half line." Czechoslovak Mathematical Journal 52.4 (2002): 851-860. <http://eudml.org/doc/30749>.
@article{Attalienti2002,
abstract = {We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.},
author = {Attalienti, Antonio, Campiti, Michele},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula; Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula},
language = {eng},
number = {4},
pages = {851-860},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bernstein-type operators on the half line},
url = {http://eudml.org/doc/30749},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Attalienti, Antonio
AU - Campiti, Michele
TI - Bernstein-type operators on the half line
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 851
EP - 860
AB - We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.
LA - eng
KW - Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula; Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula
UR - http://eudml.org/doc/30749
ER -
References
top- Korovkin-type Approximation Theory and its Applications, Vol.17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994. (1994) MR1292247
- On a generalization of Baskakov operators, Rev. Roumaine Math. Pures Appl. 44 (1999), 683–705. (1999) MR1839672
- 10.1023/A:1011450903149, Positivity 5 (2001), 239–257. (2001) MR1836748DOI10.1023/A:1011450903149
- Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M. S. Bernstein, Compositio Math. 4 (1937), 380–393. (1937) MR1556982
- 10.1016/1385-7258(86)90023-5, Indag. Math. 89 (1986), 379–387. (1986) MR0869754DOI10.1016/1385-7258(86)90023-5
- 10.1016/0021-9045(76)90080-0, J. Approx. Theory 17 (1976), 359–365. (1976) Zbl0335.41012MR0417644DOI10.1016/0021-9045(76)90080-0
- Korovkin’s theorems, Bull. Malaysian Math. Soc. 2 (1979), 13–29. (1979) MR0545798
- 10.4064/sm-35-3-299-304, Studia Math. 35 (1970), 299–304. (1970) MR0271585DOI10.4064/sm-35-3-299-304
- The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P. Korovkin, Soviet. Math. Dokl. 15 (1974), 1433–1436. (1974) Zbl0312.41013
- 10.1007/BF01146928, Math. Notes 20 (1976), 995–998. (1976) DOI10.1007/BF01146928
- 10.1016/0021-9045(82)90075-2, J. Approx. Theory 34 (1982), 325–334. (1982) MR0656633DOI10.1016/0021-9045(82)90075-2
- On -semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points, In: Approximation and Optimization. Lecture Notes in Math. 1354, J. A. Gómez Fernández et al. (eds.), Springer-Verlag, Berlin-New York, 1988, pp. 209–216. (1988) MR0996675
- 10.2140/pjm.1958.8.887, Pacific J. Math. 8 (1958), 887–919. (1958) Zbl0099.10302MR0103420DOI10.2140/pjm.1958.8.887
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.