Bernstein-type operators on the half line

Antonio Attalienti; Michele Campiti

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 4, page 851-860
  • ISSN: 0011-4642

Abstract

top
We define Bernstein-type operators on the half line [ 0 , + [ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.

How to cite

top

Attalienti, Antonio, and Campiti, Michele. "Bernstein-type operators on the half line." Czechoslovak Mathematical Journal 52.4 (2002): 851-860. <http://eudml.org/doc/30749>.

@article{Attalienti2002,
abstract = {We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.},
author = {Attalienti, Antonio, Campiti, Michele},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula; Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula},
language = {eng},
number = {4},
pages = {851-860},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bernstein-type operators on the half line},
url = {http://eudml.org/doc/30749},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Attalienti, Antonio
AU - Campiti, Michele
TI - Bernstein-type operators on the half line
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 4
SP - 851
EP - 860
AB - We define Bernstein-type operators on the half line $\mathopen [0,+\infty \mathclose [$ by means of two sequences of strictly positive real numbers. After studying their approximation properties, we also establish a Voronovskaja-type result with respect to a suitable weighted norm.
LA - eng
KW - Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula; Bernstein-Chlodovsky operators; approximation process; Voronovskaja-type formula
UR - http://eudml.org/doc/30749
ER -

References

top
  1. Korovkin-type Approximation Theory and its Applications, Vol.17, de Gruyter Series Studies in Mathematics, de Gruyter, Berlin-New York, 1994. (1994) MR1292247
  2. On a generalization of Baskakov operators, Rev. Roumaine Math. Pures Appl. 44 (1999), 683–705. (1999) MR1839672
  3. 10.1023/A:1011450903149, Positivity 5 (2001), 239–257. (2001) MR1836748DOI10.1023/A:1011450903149
  4. Sur le développement des fonctions définies dans un interval infini en séries de polynômes de M. S.  Bernstein, Compositio Math. 4 (1937), 380–393. (1937) MR1556982
  5. 10.1016/1385-7258(86)90023-5, Indag. Math. 89 (1986), 379–387. (1986) MR0869754DOI10.1016/1385-7258(86)90023-5
  6. 10.1016/0021-9045(76)90080-0, J.  Approx. Theory 17 (1976), 359–365. (1976) Zbl0335.41012MR0417644DOI10.1016/0021-9045(76)90080-0
  7. Korovkin’s theorems, Bull. Malaysian Math. Soc. 2 (1979), 13–29. (1979) MR0545798
  8. 10.4064/sm-35-3-299-304, Studia Math. 35 (1970), 299–304. (1970) MR0271585DOI10.4064/sm-35-3-299-304
  9. The convergence problem for a sequence of positive linear operators on unbounded sets, and theorems analogous to that of P. P.  Korovkin, Soviet. Math. Dokl. 15 (1974), 1433–1436. (1974) Zbl0312.41013
  10. 10.1007/BF01146928, Math. Notes 20 (1976), 995–998. (1976) DOI10.1007/BF01146928
  11. 10.1016/0021-9045(82)90075-2, J.  Approx. Theory 34 (1982), 325–334. (1982) MR0656633DOI10.1016/0021-9045(82)90075-2
  12. On C 0 -semigroups in a space of bounded continuous functions in the case of entrance or natural boundary points, In: Approximation and Optimization. Lecture Notes in Math.  1354, J. A. Gómez Fernández et al. (eds.), Springer-Verlag, Berlin-New York, 1988, pp. 209–216. (1988) MR0996675
  13. 10.2140/pjm.1958.8.887, Pacific J.  Math. 8 (1958), 887–919. (1958) Zbl0099.10302MR0103420DOI10.2140/pjm.1958.8.887

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.