On a two-point boundary value problem for second order singular equations
Alexander Lomtatidze; P. Torres
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 1, page 19-43
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLomtatidze, Alexander, and Torres, P.. "On a two-point boundary value problem for second order singular equations." Czechoslovak Mathematical Journal 53.1 (2003): 19-43. <http://eudml.org/doc/30756>.
@article{Lomtatidze2003,
abstract = {The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^\{\prime \prime \}=f(t,u)+g(t,u)u^\{\prime \};\quad u(a+)=0, \quad u(b-)=0 \]
is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb \{R\}$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.},
author = {Lomtatidze, Alexander, Torres, P.},
journal = {Czechoslovak Mathematical Journal},
keywords = {second order singular equation; two-point boundary value problem; solvability; second-order singular equation; two-point boundary value problem; solvability},
language = {eng},
number = {1},
pages = {19-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a two-point boundary value problem for second order singular equations},
url = {http://eudml.org/doc/30756},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Lomtatidze, Alexander
AU - Torres, P.
TI - On a two-point boundary value problem for second order singular equations
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 19
EP - 43
AB - The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^{\prime \prime }=f(t,u)+g(t,u)u^{\prime };\quad u(a+)=0, \quad u(b-)=0 \]
is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb {R}$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
LA - eng
KW - second order singular equation; two-point boundary value problem; solvability; second-order singular equation; two-point boundary value problem; solvability
UR - http://eudml.org/doc/30756
ER -
References
top- On the laminar compressible boundary layer with stationary origin on a moving flat wall, Proc. Cambridge Phil. Soc. 63 (1967), 871–888. (1967) Zbl0166.45804
- 10.1006/jdeq.1996.0147, J. Differential Equations 130 (1996), 333–355. (1996) MR1410892DOI10.1006/jdeq.1996.0147
- 10.1090/qam/766876, Quart. Appl. Math. 42 (1985), 395–402. (1985) MR0766876DOI10.1090/qam/766876
- 10.1137/0148028, SIAM J. Appl. Math. 48 (1988), 497–505. (1988) Zbl0642.34014MR0941097DOI10.1137/0148028
- 10.1016/0362-546X(88)90070-3, Nonlinear Anal. 12 (1988), 855–869. (1988) MR0960631DOI10.1016/0362-546X(88)90070-3
- 10.1016/0022-247X(68)90260-6, J. Math. Anal. Appl. 21 (1968), 510–529. (1968) MR0224331DOI10.1016/0022-247X(68)90260-6
- 10.1016/0022-247X(78)90022-7, J. Math. Anal. Appl. 64 (1978), 96–105. (1978) MR0478973DOI10.1016/0022-247X(78)90022-7
- 10.1137/0138024, SIAM J. Appl. Math. 38 (1980), 275–281. (1980) MR0564014DOI10.1137/0138024
- 10.1137/0517044, SIAM J. Math. Anal. 17 (1986), 595–609. (1986) MR0838243DOI10.1137/0517044
- 10.1016/0022-0396(89)90113-7, J. Differential Equations 79 (1989), 62–78. (1989) MR0997609DOI10.1016/0022-0396(89)90113-7
- 10.1016/0362-546X(91)90083-D, Nonlinear Anal. 16 (1991), 781–790. (1991) Zbl0737.35024MR1097131DOI10.1016/0362-546X(91)90083-D
- 10.1016/0362-546X(94)90193-7, Nonlinear Anal. 23 (1994), 953–970. (1994) MR1304238DOI10.1016/0362-546X(94)90193-7
- 10.1006/jmaa.1994.1052, J. Math. Anal. Appl. 181 (1994), 684–700. (1994) MR1264540DOI10.1006/jmaa.1994.1052
- Positive solutions for a class of singular boundary value problems, Boll. Un. Mat. Ital. A 9 (1995), 273–286. (1995) MR1336236
- On some singular boundary value problems for nonlinear differential equations of the second order, Differentsial’nye Uravneniya 4 (1968), 1753–1773. (Russian) (1968) MR0245893
- 10.1016/0022-247X(84)90107-0, J. Math. Anal. Appl. 101 (1984), 325–347. (1984) MR0748576DOI10.1016/0022-247X(84)90107-0
- Singular boundary value problems for second order ordinary differential equations, In: Curent Problems in Mathematics: Newest Results, Vol. 3, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987, pp. 3-103. (1987) MR0925830
- One a boundary value problem with singularities on the ends of the segment, Differ. Equations Latv. Mat. Ezhegodnik 17 (1976), 179–186. (1976)
- Positive solutions of boundary value problems for second order ordinary differential equations with singular points, Differentsial’nye Uravneniya 23 (1987), 1685–1692. (1987) MR0928850
- 10.1007/BF02257736, Georgian Math. J. 2 (1995), 93–98. (1995) Zbl0820.34018MR1310503DOI10.1007/BF02257736
- 10.1137/0512073, SIAM J. Math. Anal. 12 (1981), 874–879. (1981) MR0635240DOI10.1137/0512073
- On analytic structure of a solution of the membrane equation, Dokl. Akad. Nauk SSSR 152 (1963), 78–80. (1963)
- Application of Chaplygin’s method to investigation of the membrane equation, Differentsial’nye Uravneniya 2 (1966), 425–427. (Russian) (1966)
- Asymptotics of equation of large deflection of circular symmetrically loaded plate, Sibirsk. Mat. Zh. 4 (1963), 657–672. (Russian) (1963)
- 10.1016/0362-546X(79)90057-9, Nonlinear Anal. 3 (1979), 897–904. (1979) Zbl0421.34021MR0548961DOI10.1016/0362-546X(79)90057-9
- 10.1016/0362-546X(92)90177-G, Nonlinear Anal. 19 (1992), 323–333. (1992) Zbl0900.34019MR1178406DOI10.1016/0362-546X(92)90177-G
- 10.1016/0362-546X(95)93091-H, Nonlinear Anal. 24 (1995), 555–561. (1995) Zbl0876.34017MR1315694DOI10.1016/0362-546X(95)93091-H
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.