The geography of simply-connected symplectic manifolds

Mi Sung Cho; Yong Seung Cho

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 265-276
  • ISSN: 0011-4642

Abstract

top
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain × is covered by minimal, simply connected, symplectic 4-manifolds.

How to cite

top

Cho, Mi Sung, and Cho, Yong Seung. "The geography of simply-connected symplectic manifolds." Czechoslovak Mathematical Journal 53.2 (2003): 265-276. <http://eudml.org/doc/30775>.

@article{Cho2003,
abstract = {By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb \{Z\}\times \mathbb \{Z\}$ is covered by minimal, simply connected, symplectic 4-manifolds.},
author = {Cho, Mi Sung, Cho, Yong Seung},
journal = {Czechoslovak Mathematical Journal},
keywords = {Seiberg-Witten invariant; geography of symplectic 4-manifold; Seiberg-Witten invariant; geography of symplectic 4-manifold},
language = {eng},
number = {2},
pages = {265-276},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The geography of simply-connected symplectic manifolds},
url = {http://eudml.org/doc/30775},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Cho, Mi Sung
AU - Cho, Yong Seung
TI - The geography of simply-connected symplectic manifolds
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 265
EP - 276
AB - By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb {Z}\times \mathbb {Z}$ is covered by minimal, simply connected, symplectic 4-manifolds.
LA - eng
KW - Seiberg-Witten invariant; geography of symplectic 4-manifold; Seiberg-Witten invariant; geography of symplectic 4-manifold
UR - http://eudml.org/doc/30775
ER -

References

top
  1. Surgery, knots and the Seiberg-Witten equations, Preprint. 
  2. Homotopy K3 surfaces and gluing results in Seiberg-Witten theory, Preprint. Zbl0870.57022MR1437600
  3. Compact Complex Surfaces. Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1984. (1984) MR0749574
  4. 10.1142/S0252959900000157, Chinese Ann. Math. Ser. B 21 (2000), 115–120. (2000) MR1762280DOI10.1142/S0252959900000157
  5. 10.1090/S0002-9947-1991-1010409-2, Trans. Amer. Math. Soc. 323 (1991), 233–261. (1991) Zbl0724.57013MR1010409DOI10.1090/S0002-9947-1991-1010409-2
  6. 10.1016/0926-2245(96)00009-5, Differential Geom. Appl. 6 (1996), 87–99. (1996) MR1384881DOI10.1016/0926-2245(96)00009-5
  7. Seiberg-Witten invariants on non-symplectic 4-manifolds, Osaka J.  Math. 34 (1997), 169–173. (1997) Zbl0882.57013MR1439004
  8. Finite group actions and Gromov-Witten invariants, Preprint. 
  9. 10.1007/BF01232253, Invent. Math. 117 (1994), 455–523. (1994) MR1283727DOI10.1007/BF01232253
  10. Rational blowdowns of smooth 4-manifolds, Preprint. MR1484044
  11. 10.2307/2118554, Ann. Math. 142 (1995), 527–595. (1995) Zbl0849.53027MR1356781DOI10.2307/2118554
  12. The genus of embedded surfaces in the projective plane, Math. Res. Lett. (1994), 794–808. (1994) MR1306022
  13. Chern invariants of surfaces of general type, Composito Math. 43 (1981), 3–58. (1981) Zbl0479.14018MR0631426
  14. Spin geometry and Seiberg-Witten invariants, University of Warwick (1995). (1995) 
  15. A note on the geography of symplectic manifolds, Preprint. Zbl0876.57039
  16. 10.4310/MRL.1994.v1.n6.a15, Math. Res. Lett. 1 (1994), 809–822. (1994) Zbl0853.57019MR1306023DOI10.4310/MRL.1994.v1.n6.a15

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.