The geography of simply-connected symplectic manifolds
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 2, page 265-276
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCho, Mi Sung, and Cho, Yong Seung. "The geography of simply-connected symplectic manifolds." Czechoslovak Mathematical Journal 53.2 (2003): 265-276. <http://eudml.org/doc/30775>.
@article{Cho2003,
abstract = {By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb \{Z\}\times \mathbb \{Z\}$ is covered by minimal, simply connected, symplectic 4-manifolds.},
author = {Cho, Mi Sung, Cho, Yong Seung},
journal = {Czechoslovak Mathematical Journal},
keywords = {Seiberg-Witten invariant; geography of symplectic 4-manifold; Seiberg-Witten invariant; geography of symplectic 4-manifold},
language = {eng},
number = {2},
pages = {265-276},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The geography of simply-connected symplectic manifolds},
url = {http://eudml.org/doc/30775},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Cho, Mi Sung
AU - Cho, Yong Seung
TI - The geography of simply-connected symplectic manifolds
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 265
EP - 276
AB - By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb {Z}\times \mathbb {Z}$ is covered by minimal, simply connected, symplectic 4-manifolds.
LA - eng
KW - Seiberg-Witten invariant; geography of symplectic 4-manifold; Seiberg-Witten invariant; geography of symplectic 4-manifold
UR - http://eudml.org/doc/30775
ER -
References
top- Surgery, knots and the Seiberg-Witten equations, Preprint.
- Homotopy K3 surfaces and gluing results in Seiberg-Witten theory, Preprint. Zbl0870.57022MR1437600
- Compact Complex Surfaces. Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1984. (1984) MR0749574
- 10.1142/S0252959900000157, Chinese Ann. Math. Ser. B 21 (2000), 115–120. (2000) MR1762280DOI10.1142/S0252959900000157
- 10.1090/S0002-9947-1991-1010409-2, Trans. Amer. Math. Soc. 323 (1991), 233–261. (1991) Zbl0724.57013MR1010409DOI10.1090/S0002-9947-1991-1010409-2
- 10.1016/0926-2245(96)00009-5, Differential Geom. Appl. 6 (1996), 87–99. (1996) MR1384881DOI10.1016/0926-2245(96)00009-5
- Seiberg-Witten invariants on non-symplectic 4-manifolds, Osaka J. Math. 34 (1997), 169–173. (1997) Zbl0882.57013MR1439004
- Finite group actions and Gromov-Witten invariants, Preprint.
- 10.1007/BF01232253, Invent. Math. 117 (1994), 455–523. (1994) MR1283727DOI10.1007/BF01232253
- Rational blowdowns of smooth 4-manifolds, Preprint. MR1484044
- 10.2307/2118554, Ann. Math. 142 (1995), 527–595. (1995) Zbl0849.53027MR1356781DOI10.2307/2118554
- The genus of embedded surfaces in the projective plane, Math. Res. Lett. (1994), 794–808. (1994) MR1306022
- Chern invariants of surfaces of general type, Composito Math. 43 (1981), 3–58. (1981) Zbl0479.14018MR0631426
- Spin geometry and Seiberg-Witten invariants, University of Warwick (1995). (1995)
- A note on the geography of symplectic manifolds, Preprint. Zbl0876.57039
- 10.4310/MRL.1994.v1.n6.a15, Math. Res. Lett. 1 (1994), 809–822. (1994) Zbl0853.57019MR1306023DOI10.4310/MRL.1994.v1.n6.a15
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.