Preduals of spaces of vector-valued holomorphic functions

Christopher Boyd

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 365-376
  • ISSN: 0011-4642

Abstract

top
For U a balanced open subset of a Fréchet space E and F a dual-Banach space we introduce the topology τ γ on the space ( U , F ) of holomorphic functions from U into F . This topology allows us to construct a predual for ( ( U , F ) , τ δ ) which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.

How to cite

top

Boyd, Christopher. "Preduals of spaces of vector-valued holomorphic functions." Czechoslovak Mathematical Journal 53.2 (2003): 365-376. <http://eudml.org/doc/30783>.

@article{Boyd2003,
abstract = {For $U$ a balanced open subset of a Fréchet space $E$ and $F$ a dual-Banach space we introduce the topology $\tau _\gamma $ on the space $\{\mathcal \{H\}\}(U,F)$ of holomorphic functions from $U$ into $F$. This topology allows us to construct a predual for $(\{\mathcal \{H\}\}(U,F),\tau _\delta )$ which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.},
author = {Boyd, Christopher},
journal = {Czechoslovak Mathematical Journal},
keywords = {holomorphic functions; Fréchet spaces; preduals; holomorphic functions; Fréchet spaces; preduals},
language = {eng},
number = {2},
pages = {365-376},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Preduals of spaces of vector-valued holomorphic functions},
url = {http://eudml.org/doc/30783},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Boyd, Christopher
TI - Preduals of spaces of vector-valued holomorphic functions
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 365
EP - 376
AB - For $U$ a balanced open subset of a Fréchet space $E$ and $F$ a dual-Banach space we introduce the topology $\tau _\gamma $ on the space ${\mathcal {H}}(U,F)$ of holomorphic functions from $U$ into $F$. This topology allows us to construct a predual for $({\mathcal {H}}(U,F),\tau _\delta )$ which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.
LA - eng
KW - holomorphic functions; Fréchet spaces; preduals; holomorphic functions; Fréchet spaces; preduals
UR - http://eudml.org/doc/30783
ER -

References

top
  1. 10.1090/conm/144/1209441, Contemp. Math. 144 (1993), 1–8. (1993) Zbl0795.46033MR1209441DOI10.1090/conm/144/1209441
  2. 10.1080/16073606.1998.9632038, Quaestiones Math. 21 (1998), 177–186. (1998) MR1701813DOI10.1080/16073606.1998.9632038
  3. Topologies associated with the compact open topology on  ( U ) , Proc. R. Ir. Acad. 82A (1982), 121–129. (1982) MR0669471
  4. 10.1016/0022-1236(76)90026-4, J.  Funct. Anal. 21 (1976), 7–30. (1976) MR0402504DOI10.1016/0022-1236(76)90026-4
  5. Holomorphic germs and homogeneous polynomials on quasinormable metrizable spaces, Rend. Math. 6 (1977), 117–127. (1977) MR0458170
  6. An introduction to locally convex inductive limits, Functional Analysis and its Applications, World Scientific, 1988, pp. 35–132. (1988) Zbl0786.46001MR0979516
  7. Biduality in Fréchet and (LB)-spaces, Progress in Functional Analysis, North-Holland Math. Studies, Vol. 170, 1992, pp. 113–133. (1992) MR1150741
  8. Density condition in Fréchet and (DF)-spaces, Rev. Matem. Univ. Complut. Madrid 2 (1989), 59–76. (1989) MR1057209
  9. Vector-valued holomorphic germs on Fréchet Schwartz spaces, Proc. Royal Ir. Acad. 94A (1994), 3–46. (1994) 
  10. 10.1016/S0304-0208(08)70757-6, North-Holland Math. Studies 33 (1979), 111–178. (1979) MR0520658DOI10.1016/S0304-0208(08)70757-6
  11. A question of Valdivia on quasinormable Fréchet spaces, Canad. Math. Bull. 33 (1991), 301–314. (1991) Zbl0698.46002MR1127750
  12. Completeness of spaces of vector-valued holomorphic germs, Math. Scand. 75 (1995), 250–260. (1995) MR1308945
  13. Preduals of the space of holomorphic functions on a Fréchet space, Ph.D. Thesis, National University of Ireland (1992). (1992) 
  14. Distinguished preduals of the space of holomorphic functions, Rev. Mat. Univ. Complut. Madrid 6 (1993), 221–232. (1993) MR1269753
  15. 10.4064/sm-107-3-305-315, Studia Math. 107 (1993), 305–325. (1993) MR1247205DOI10.4064/sm-107-3-305-315
  16. Some topological properties of preduals of spaces of holomorphic functions, Proc. Royal Ir. Acad. 94A (1994), 167–178. (1994) Zbl0852.46037MR1369030
  17. 10.1006/jmaa.1996.0044, J.  Math. Anal. Appl. 197 (1996), 635–657. (1996) MR1373071DOI10.1006/jmaa.1996.0044
  18. Sur les théoremes de Vitali et de Montel en dimension infinie, C.R.A.Sc., Paris 274 (1972), 185–187. (1972) MR0295022
  19. 10.4064/sm-74-3-213-245, Studia Math. 74 (1982), 213–245. (1982) MR0683747DOI10.4064/sm-74-3-213-245
  20. Tensor products and spaces of vector-valued continuous functions, Manuscripta Math. 55 (1986), 432–449. (1986) MR0836875
  21. Complex Analysis on Locally Convex Spaces, North-Holland Math. Studies, Vol. 57, 1981. (1981) MR0640093
  22. 10.4064/sm-113-1-43-54, Studia Math. 113 (1995), 43–54. (1995) Zbl0831.46048MR1315520DOI10.4064/sm-113-1-43-54
  23. The Borel-Okada theorem revisited, Habilitation Schrift, 1992. (1992) 
  24. 10.1007/978-1-4684-9369-6, Springer-Verlag Graduate Texts in Math., Vol. 24, 1975. (1975) Zbl0336.46001MR0410335DOI10.1007/978-1-4684-9369-6
  25. Topological Vector Spaces and Distributions, Vol. 1, Addison-Wesley, Massachusetts, 1966. (1966) MR0205028
  26. Locally Convex Spaces, B. G.  Teubner, Stuttgart, 1981. (1981) Zbl0466.46001MR0632257
  27. 10.1017/S0305004100046193, Cambridge Phil. Soc. 68 (1970), 377–392. (1970) Zbl0196.13505MR0262796DOI10.1017/S0305004100046193
  28. 10.1016/0022-1236(84)90099-5, J.  Funct. Anal. 57 (1984), 32–48. (1984) MR0744918DOI10.1016/0022-1236(84)90099-5
  29. Linearization of holomorphic mappings on locally convex spaces, J.  Math. Pures Appl. 71 (1992), 543–560. (1992) MR1193608
  30. Weak holomorphy, Unpublished manuscript. 
  31. Barrelled Locally Convex Spaces. North Holland Math. Studies, Vol.  131, North Holland, Amsterdam, 1987. (1987) MR0880207
  32. Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. 19 (1994), 167–203. (1994) Zbl0789.46006MR1246894
  33. 10.4064/sm-106-2-189-196, Studia Math. 106 (1993), 189–196. (1993) Zbl0810.46008MR1240313DOI10.4064/sm-106-2-189-196
  34. 10.1016/0022-247X(81)90177-3, J.  Math. Anal. Appl. 84 (1981), 400–417. (1981) Zbl0477.47027MR0639673DOI10.1016/0022-247X(81)90177-3
  35. Applications of topological tensor products to infinite dimensional holomorphy, Ph.D. Thesis, Trinity College, Dublin, 1980. (1980) 
  36. Topological Vector Spaces, Third Printing corrected, Springer-Verlag, 1971. (1971) Zbl0217.16002MR0342978
  37. Espaces de fonctions continues, Lecture Notes in Math., Vol.  519, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) Zbl0334.46022MR0423058

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.