Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 2, page 397-404
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJung, Jong Soo, and Sahu, Daya Ram. "Dual convergences of iteration processes for nonexpansive mappings in Banach spaces." Czechoslovak Mathematical Journal 53.2 (2003): 397-404. <http://eudml.org/doc/30785>.
@article{Jung2003,
abstract = {In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.},
author = {Jung, Jong Soo, Sahu, Daya Ram},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping; Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping},
language = {eng},
number = {2},
pages = {397-404},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual convergences of iteration processes for nonexpansive mappings in Banach spaces},
url = {http://eudml.org/doc/30785},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Jung, Jong Soo
AU - Sahu, Daya Ram
TI - Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 397
EP - 404
AB - In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
LA - eng
KW - Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping; Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping
UR - http://eudml.org/doc/30785
ER -
References
top- Accretive operators, Banach limits and dual ergodic theorems, Bull. Acad. Polon. Sci. 29 (1981), 585–589. (1981) MR0654218
- Convergence of the Ishikawa iteration process for nonexpansive mappings, J. Math. Anal. Appl. 199 (1996), 769–775. (1996) Zbl0856.47041MR1386604
- Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. (1984) MR0744194
- 10.1090/S0002-9939-1974-0336469-5, Proc. Amer. Math. Soc. 44 (1974), 147–150. (1974) MR0336469DOI10.1090/S0002-9939-1974-0336469-5
- 10.1016/0022-247X(90)90351-F, J. Math. Anal. Appl. 104 (1990), 330–339. (1990) MR1050208DOI10.1016/0022-247X(90)90351-F
- 10.1007/BF02393648, Acta Math. 80 (1948), 167–190. (1948) MR0027868DOI10.1007/BF02393648
- 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) Zbl0050.11603MR0054846DOI10.1090/S0002-9939-1953-0054846-3
- 10.1016/0022-247X(79)90024-6, J. Math. Anal. Appl. 67 (1979), 274–276. (1979) MR0528688DOI10.1016/0022-247X(79)90024-6
- 10.1016/0022-1236(80)90097-X, J. Functional Analysis 36 (1980), 147–168. (1980) Zbl0437.47048MR0569251DOI10.1016/0022-1236(80)90097-X
- 10.1006/jmaa.1993.1309, J. Math. Anal. Appl. 178 (1993), 301–308. (1993) MR1238879DOI10.1006/jmaa.1993.1309
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.