Dual convergences of iteration processes for nonexpansive mappings in Banach spaces

Jong Soo Jung; Daya Ram Sahu

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 397-404
  • ISSN: 0011-4642

Abstract

top
In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.

How to cite

top

Jung, Jong Soo, and Sahu, Daya Ram. "Dual convergences of iteration processes for nonexpansive mappings in Banach spaces." Czechoslovak Mathematical Journal 53.2 (2003): 397-404. <http://eudml.org/doc/30785>.

@article{Jung2003,
abstract = {In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.},
author = {Jung, Jong Soo, Sahu, Daya Ram},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping; Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping},
language = {eng},
number = {2},
pages = {397-404},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual convergences of iteration processes for nonexpansive mappings in Banach spaces},
url = {http://eudml.org/doc/30785},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Jung, Jong Soo
AU - Sahu, Daya Ram
TI - Dual convergences of iteration processes for nonexpansive mappings in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 397
EP - 404
AB - In this paper we establish a dual weak convergence theorem for the Ishikawa iteration process for nonexpansive mappings in a reflexive and strictly convex Banach space with a uniformly Gâteaux differentiable norm, and then apply this result to study the problem of the weak convergence of the iteration process.
LA - eng
KW - Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping; Banach limit; dual convergence theorem; duality mapping; Ishikawa iteration process; nonexpansive mapping
UR - http://eudml.org/doc/30785
ER -

References

top
  1. Accretive operators, Banach limits and dual ergodic theorems, Bull. Acad. Polon. Sci. 29 (1981), 585–589. (1981) MR0654218
  2. Convergence of the Ishikawa iteration process for nonexpansive mappings, J.  Math. Anal. Appl. 199 (1996), 769–775. (1996) Zbl0856.47041MR1386604
  3. Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984. (1984) MR0744194
  4. 10.1090/S0002-9939-1974-0336469-5, Proc. Amer. Math. Soc. 44 (1974), 147–150. (1974) MR0336469DOI10.1090/S0002-9939-1974-0336469-5
  5. 10.1016/0022-247X(90)90351-F, J.  Math. Anal. Appl. 104 (1990), 330–339. (1990) MR1050208DOI10.1016/0022-247X(90)90351-F
  6. 10.1007/BF02393648, Acta Math. 80 (1948), 167–190. (1948) MR0027868DOI10.1007/BF02393648
  7. 10.1090/S0002-9939-1953-0054846-3, Proc. Amer. Math. Soc. 4 (1953), 506–510. (1953) Zbl0050.11603MR0054846DOI10.1090/S0002-9939-1953-0054846-3
  8. 10.1016/0022-247X(79)90024-6, J.  Math. Anal. Appl. 67 (1979), 274–276. (1979) MR0528688DOI10.1016/0022-247X(79)90024-6
  9. 10.1016/0022-1236(80)90097-X, J.  Functional Analysis 36 (1980), 147–168. (1980) Zbl0437.47048MR0569251DOI10.1016/0022-1236(80)90097-X
  10. 10.1006/jmaa.1993.1309, J.  Math. Anal. Appl. 178 (1993), 301–308. (1993) MR1238879DOI10.1006/jmaa.1993.1309

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.