An iteration process for nonlinear mappings in uniformly convex linear metric spaces

Ismat Beg

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 2, page 405-412
  • ISSN: 0011-4642

Abstract

top
We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.

How to cite

top

Beg, Ismat. "An iteration process for nonlinear mappings in uniformly convex linear metric spaces." Czechoslovak Mathematical Journal 53.2 (2003): 405-412. <http://eudml.org/doc/30786>.

@article{Beg2003,
abstract = {We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.},
author = {Beg, Ismat},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear metric space; fixed point; uniformly convex; linear metric space; fixed point; uniform convexity; Cauchy Picard sequence; Tricomi mapping; uniformly convex space},
language = {eng},
number = {2},
pages = {405-412},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An iteration process for nonlinear mappings in uniformly convex linear metric spaces},
url = {http://eudml.org/doc/30786},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Beg, Ismat
TI - An iteration process for nonlinear mappings in uniformly convex linear metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 405
EP - 412
AB - We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.
LA - eng
KW - linear metric space; fixed point; uniformly convex; linear metric space; fixed point; uniform convexity; Cauchy Picard sequence; Tricomi mapping; uniformly convex space
UR - http://eudml.org/doc/30786
ER -

References

top
  1. Un cas de convergence des iterees d’une contraction dans un espace uniforment convexe, (1978), Unpublished. (1978) 
  2. Structure of the set of fixed points of nonexpansive mappings on convex metric spaces, Annales Univ. Marie Curie-Sklodowska (Sec.  A)—Mathematica  LII(2)(1), 1998, pp. 7–14. (1998) Zbl1004.54031MR1728052
  3. 10.12775/TMNA.2001.012, Topol. Methods Nonlinear Anal. 17 (2001), 183–190. (2001) Zbl0998.47040MR1846986DOI10.12775/TMNA.2001.012
  4. Some fixed point theorems in convex metric spaces, Rend. Circ. Mat. Palermo XL (1991), 307–315. (1991) MR1151591
  5. Fixed point theorems and best approximation in convex rmetric spaces, J. Approx. Theory 8 (1992), 97–105. (1992) MR1212852
  6. On some discontinuous fixed point theorems in convex metric spaces, Czechoslovak Math. J. 43(188) (1993), 319–326. (1993) MR1211753
  7. 10.1016/0022-247X(88)90047-9, J. Math. Anal. Appl. 132 (1988), 114–122. (1988) Zbl0683.47044MR0942358DOI10.1016/0022-247X(88)90047-9
  8. A remark on Kaneko report on general contractive type conditions for multivalued mappings in Takahashi convex metric spaces, Zb. Rad. Prirod. Mat. Fak. Ser. Mat.  23 (1993), 61–66. (1993) MR1333534
  9. Fixed point theorems for nonexpansive mappings in convex metric spaces, Nonlinear analysis and application, Proc. int. Conf. Lecture Notes Pure Appl. Math. 80, S. P.  Singh, J. H.  Barry (eds.), Marcel Dekker Inc., New York, 1982, pp. 179–189. (1982) MR0689554
  10. 10.1080/01630568208816123, Numer. Funct. Anal. Optim. 4 (1982), 371–381. (1982) MR0673318DOI10.1080/01630568208816123
  11. Un cos des convergence des iterees d’une contraction d’une espace Hilbertien, C. R. Acad. Paris 286 (1978), 143–144. (1978) 
  12. Fixed points in convex metric spaces, Math. Japon. 29 (1984), 585–597. (1984) MR0759448
  13. Fixed point theorems in certain convex metric spaces, Math. Japon. 37 (1992), 855–859. (1992) MR1186552
  14. 10.12775/TMNA.1996.028, Topol. Methods Nonlinear Anal. 8 (1996), 197–203. (1996) MR1485764DOI10.12775/TMNA.1996.028
  15. 10.2996/kmj/1138846111, Kodai Math. Sem. Rep. 22 (1970), 142–149. (1970) MR0267565DOI10.2996/kmj/1138846111
  16. Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini 54 (1916), 1–9. (1916) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.