An iteration process for nonlinear mappings in uniformly convex linear metric spaces
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 2, page 405-412
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBeg, Ismat. "An iteration process for nonlinear mappings in uniformly convex linear metric spaces." Czechoslovak Mathematical Journal 53.2 (2003): 405-412. <http://eudml.org/doc/30786>.
@article{Beg2003,
abstract = {We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.},
author = {Beg, Ismat},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear metric space; fixed point; uniformly convex; linear metric space; fixed point; uniform convexity; Cauchy Picard sequence; Tricomi mapping; uniformly convex space},
language = {eng},
number = {2},
pages = {405-412},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An iteration process for nonlinear mappings in uniformly convex linear metric spaces},
url = {http://eudml.org/doc/30786},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Beg, Ismat
TI - An iteration process for nonlinear mappings in uniformly convex linear metric spaces
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 2
SP - 405
EP - 412
AB - We obtain necessary conditions for convergence of the Cauchy Picard sequence of iterations for Tricomi mappings defined on a uniformly convex linear complete metric space.
LA - eng
KW - linear metric space; fixed point; uniformly convex; linear metric space; fixed point; uniform convexity; Cauchy Picard sequence; Tricomi mapping; uniformly convex space
UR - http://eudml.org/doc/30786
ER -
References
top- Un cas de convergence des iterees d’une contraction dans un espace uniforment convexe, (1978), Unpublished. (1978)
- Structure of the set of fixed points of nonexpansive mappings on convex metric spaces, Annales Univ. Marie Curie-Sklodowska (Sec. A)—Mathematica LII(2)(1), 1998, pp. 7–14. (1998) Zbl1004.54031MR1728052
- 10.12775/TMNA.2001.012, Topol. Methods Nonlinear Anal. 17 (2001), 183–190. (2001) Zbl0998.47040MR1846986DOI10.12775/TMNA.2001.012
- Some fixed point theorems in convex metric spaces, Rend. Circ. Mat. Palermo XL (1991), 307–315. (1991) MR1151591
- Fixed point theorems and best approximation in convex rmetric spaces, J. Approx. Theory 8 (1992), 97–105. (1992) MR1212852
- On some discontinuous fixed point theorems in convex metric spaces, Czechoslovak Math. J. 43(188) (1993), 319–326. (1993) MR1211753
- 10.1016/0022-247X(88)90047-9, J. Math. Anal. Appl. 132 (1988), 114–122. (1988) Zbl0683.47044MR0942358DOI10.1016/0022-247X(88)90047-9
- A remark on Kaneko report on general contractive type conditions for multivalued mappings in Takahashi convex metric spaces, Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 23 (1993), 61–66. (1993) MR1333534
- Fixed point theorems for nonexpansive mappings in convex metric spaces, Nonlinear analysis and application, Proc. int. Conf. Lecture Notes Pure Appl. Math. 80, S. P. Singh, J. H. Barry (eds.), Marcel Dekker Inc., New York, 1982, pp. 179–189. (1982) MR0689554
- 10.1080/01630568208816123, Numer. Funct. Anal. Optim. 4 (1982), 371–381. (1982) MR0673318DOI10.1080/01630568208816123
- Un cos des convergence des iterees d’une contraction d’une espace Hilbertien, C. R. Acad. Paris 286 (1978), 143–144. (1978)
- Fixed points in convex metric spaces, Math. Japon. 29 (1984), 585–597. (1984) MR0759448
- Fixed point theorems in certain convex metric spaces, Math. Japon. 37 (1992), 855–859. (1992) MR1186552
- 10.12775/TMNA.1996.028, Topol. Methods Nonlinear Anal. 8 (1996), 197–203. (1996) MR1485764DOI10.12775/TMNA.1996.028
- 10.2996/kmj/1138846111, Kodai Math. Sem. Rep. 22 (1970), 142–149. (1970) MR0267565DOI10.2996/kmj/1138846111
- Una teorema sulla convergenza delle successioni formate delle successive iterate di una funzione di una variabile reale, Giorn. Mat. Bataglini 54 (1916), 1–9. (1916)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.