On the normality of an almost contact -structure on -submanifolds
Shoichi Funabashi; Jin Suk Pak; Yang Jae Shin
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 3, page 571-589
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFunabashi, Shoichi, Pak, Jin Suk, and Shin, Yang Jae. "On the normality of an almost contact $3$-structure on $QR$-submanifolds." Czechoslovak Mathematical Journal 53.3 (2003): 571-589. <http://eudml.org/doc/30800>.
@article{Funabashi2003,
abstract = {We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^\{(n+p)/4\}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure.},
author = {Funabashi, Shoichi, Pak, Jin Suk, Shin, Yang Jae},
journal = {Czechoslovak Mathematical Journal},
keywords = {quaternionic projective space; quaternionic number space; $QR$-submanifold; normal almost contact $3$-structure; quaternionic projective space; quaternionic number space; -submanifold; normal almost contact 3-structure},
language = {eng},
number = {3},
pages = {571-589},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the normality of an almost contact $3$-structure on $QR$-submanifolds},
url = {http://eudml.org/doc/30800},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Funabashi, Shoichi
AU - Pak, Jin Suk
AU - Shin, Yang Jae
TI - On the normality of an almost contact $3$-structure on $QR$-submanifolds
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 571
EP - 589
AB - We study $n$-dimensional $QR$-submanifolds of $QR$-dimension $(p-1)$ immersed in a quaternionic space form $QP^{(n+p)/4}(c)$, $c\geqq 0$, and, in particular, determine such submanifolds with the induced normal almost contact $3$-structure.
LA - eng
KW - quaternionic projective space; quaternionic number space; $QR$-submanifold; normal almost contact $3$-structure; quaternionic projective space; quaternionic number space; -submanifold; normal almost contact 3-structure
UR - http://eudml.org/doc/30800
ER -
References
top- Quaternion -submanifolds of a quaternion manifold, Kodai Math. J. 4 (1981), 399–418. (1981) MR0641361
- Geometry of -submanifolds, D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokyo, 1986. (1986) Zbl0605.53001MR0861408
- Geometry of Submanifolds, Marcel Dekker Inc., New York, 1973. (1973) Zbl0262.53036MR0353212
- 10.4310/jdg/1214429997, J. Differential Geom. 5 (1971), 333–340. (1971) MR0288701DOI10.4310/jdg/1214429997
- 10.4310/jdg/1214432544, J. Differential Geom. 9 (1974), 483–500. (1974) Zbl0297.53014MR0348687DOI10.4310/jdg/1214432544
- Differential geometry of fibred spaces, Publication of the Study Group of Geometry, Vol. 8, Institute of Mathematics, Yoshida College, Tokyo, 1973. (1973) MR0405275
- The trace decomposition problem, Beiträge Algebra Geom.; Contrib. Alg. Geom. 36 (1995), 303–315. (1995) Zbl0839.15024MR1358429
- On almost contact -structure, Tohoku Math. J. 22 (1970), 235–332. (1970) Zbl0205.25801MR0278225
- 10.1023/A:1006795518714, Acta Math. Hungar. 86 (2000), 89–116. (2000) MR1728592DOI10.1023/A:1006795518714
- Scalar curvature of -submanifolds immersed in a quaternionic projective space, Saitama Math. J 17 (1999), 47–57. (1999) MR1740246
- On -dimensional -submanifolds of -dimension in a quaternionic space form, Preprint.
- A class of normal almost contact -submanifolds in , Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 359–369. (1994) MR1345606
- 10.2996/kmj/1138833571, Kodai Math. Sem. Rep. 29 (1977), 22–61. (1977) Zbl0424.53012MR0461384DOI10.2996/kmj/1138833571
- 10.2748/tmj/1178241375, Tohoku Math. J. 25 (1973), 167–175. (1973) MR0336644DOI10.2748/tmj/1178241375
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.