Subdirectly irreducible MV-algebras

Hernando Gaitan

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 3, page 631-639
  • ISSN: 0011-4642

Abstract

top
In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.

How to cite

top

Gaitan, Hernando. "Subdirectly irreducible MV-algebras." Czechoslovak Mathematical Journal 53.3 (2003): 631-639. <http://eudml.org/doc/30805>.

@article{Gaitan2003,
abstract = {In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.},
author = {Gaitan, Hernando},
journal = {Czechoslovak Mathematical Journal},
keywords = {subdirectly irreducible MV-algebras},
language = {eng},
number = {3},
pages = {631-639},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Subdirectly irreducible MV-algebras},
url = {http://eudml.org/doc/30805},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Gaitan, Hernando
TI - Subdirectly irreducible MV-algebras
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 631
EP - 639
AB - In this note we characterize the one-generated subdirectly irreducible MV-algebras and use this characterization to prove that a quasivariety of MV-algebras has the relative congruence extension property if and only if it is a variety.
LA - eng
KW - subdirectly irreducible MV-algebras
UR - http://eudml.org/doc/30805
ER -

References

top
  1. 10.1007/s000120050060, Algebra Universalis 38 (1997), 391–394. (1997) MR1626343DOI10.1007/s000120050060
  2. A Course in Universal Algebra, Springer-Verlag, New York, 1981. (1981) MR0648287
  3. 10.1007/BF01197181, Algebra Universalis 35 (1996), 713–419. (1996) MR1387912DOI10.1007/BF01197181
  4. 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  5. Algebras of Łukasiewicz Logics, Second Edition. Editions CLE, State University of Campinas, Campinas, S. P. Brazil, 1995. (1995) 
  6. 10.1006/jabr.1999.7900, J.  Algebra 221 (1999), 463–474. (1999) MR1726709DOI10.1006/jabr.1999.7900
  7. 10.1023/A:1005030314538, Studia Logica 61 (1998), 65–78. (1998) MR1639698DOI10.1023/A:1005030314538
  8. Wajsberg algebras, Stochastica (1984), 5–31. (1984) MR0780136
  9. Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. (1963) Zbl0137.02001MR0171864
  10. Quasivarieties of Wajsberg algebras, J. Non-Classical Logic 8 (1991), 79–101. (1991) MR1209377
  11. The number simple of bounded commoutative BCK-chains with one generator, Math. Japon. 38 (1993), 483–486. (1993) MR1221017
  12. A Short Introduction to the Algebras of Many-Valued Logic, Monograph. 
  13. MV-algebras are categorically equivalent to bounded commutative BCK-algebras, Math. Japon. 31 (1986), 889–894. (1986) Zbl0633.03066MR0870978
  14. Commutative BCK-chains with one generator, Math. Japon. 30 (1985), 663–670. (1985) Zbl0583.03051MR0812017
  15. On the structure of commutative BCK-chains, Math. Japon. 26 (1981), 433–442. (1981) MR0634919
  16. Commutative BCK-algebras. Subdirectly irreducible algebras and varieties, Math. Japon. 27 (1982), 35–48. (1982) MR0649018
  17. Free bounded commutative BCK-algebras with one free generator, Demonstratio Mathemetica XVI (1983), 1049–1056. (1983) MR0744781

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.