Higher degrees of distributivity in M V -algebras

Ján Jakubík

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 3, page 641-653
  • ISSN: 0011-4642

Abstract

top
In this paper we deal with the of an M V -algebra 𝒜 , where α and β are nonzero cardinals. It is proved that if 𝒜 is singular and ( α , 2 ) -distributive, then it is . We show that if 𝒜 is complete then it can be represented as a direct product of M V -algebras which are homogeneous with respect to higher degrees of distributivity.

How to cite

top

Jakubík, Ján. "Higher degrees of distributivity in $MV$-algebras." Czechoslovak Mathematical Journal 53.3 (2003): 641-653. <http://eudml.org/doc/30806>.

@article{Jakubík2003,
abstract = {In this paper we deal with the of an $MV$-algebra $\mathcal \{A\}$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal \{A\}$ is singular and $(\alpha ,2)$-distributive, then it is . We show that if $\mathcal \{A\}$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {$MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity; MV-algebra; archimedean MV-algebra; completeness; singular MV-algebra; higher degrees of distributivity},
language = {eng},
number = {3},
pages = {641-653},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Higher degrees of distributivity in $MV$-algebras},
url = {http://eudml.org/doc/30806},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Jakubík, Ján
TI - Higher degrees of distributivity in $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 641
EP - 653
AB - In this paper we deal with the of an $MV$-algebra $\mathcal {A}$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal {A}$ is singular and $(\alpha ,2)$-distributive, then it is . We show that if $\mathcal {A}$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.
LA - eng
KW - $MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity; MV-algebra; archimedean MV-algebra; completeness; singular MV-algebra; higher degrees of distributivity
UR - http://eudml.org/doc/30806
ER -

References

top
  1. 10.1007/BF01136029, Math. Z. 101 (1967), 123–130. (1967) MR0218284DOI10.1007/BF01136029
  2. Algebraic Foundations of Many-valued Reasoning. Trends in Logic, Studia Logica Library, Vol.  7, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  3. 10.2140/pjm.1964.14.493, Pacific J.  Math. 14 (1964), 494–499. (1964) Zbl0122.03701MR0166279DOI10.2140/pjm.1964.14.493
  4. Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  5. Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. (1963) Zbl0137.02001MR0171864
  6. Higher degrees of distributivity in lattices and lattice ordered groups, Czechoslovak Math.  J. 18 (1968), 356–376. (1968) MR0225690
  7. Distributivity in lattice ordered groups, Czechoslovak Math.  J. 22 (1972), 108–125. (1972) MR0325487
  8. Direct product decompositions of M V -algebras, Czechoslovak Math.  J. 44 (1994), 725–739. (1994) 
  9. On complete M V -algebras, Czechoslovak Math.  J. 45 (1995), 473–480. (1995) MR1344513
  10. 10.1023/A:1022436113418, Czechoslovak Math.  J. 48 (1998), 575–582. (1998) MR1637871DOI10.1023/A:1022436113418
  11. 10.1023/A:1022440214327, Czechoslovak Math.  J. 48 (1998), 597–608. (1998) MR1637863DOI10.1023/A:1022440214327
  12. 10.1307/mmj/1028999839, Michigan Math.  J. 14 (1967), 393–400. (1967) Zbl0167.30202MR0219462DOI10.1307/mmj/1028999839
  13. 10.2140/pjm.1957.7.983, Pacific J.  Math. 7 (1957), 983–992. (1957) Zbl0086.02803MR0089180DOI10.2140/pjm.1957.7.983
  14. Boolean Algebras, Second Edition, Springer Verlag, Berlin, 1964. (1964) MR0126393
  15. Über subdirekte Summen geordneter Gruppen, Czechoslovak Math.  J. 10 (1960), 400–424. (1960) MR0123626
  16. 10.1090/S0002-9947-1962-0138569-8, Trans. Amer. Math. Soc. 104 (1962), 334–346. (1962) Zbl0105.09401MR0138569DOI10.1090/S0002-9947-1962-0138569-8
  17. 10.2140/pjm.1962.12.1131, Pacific J.  Math. 12 (1962), 1131–1148. (1962) Zbl0111.24301MR0147549DOI10.2140/pjm.1962.12.1131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.