Achromatic number of for small
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 4, page 963-988
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHorňák, Mirko, and Pčola, Štefan. "Achromatic number of $K_5 \times K_n$ for small $n$." Czechoslovak Mathematical Journal 53.4 (2003): 963-988. <http://eudml.org/doc/30828>.
@article{Horňák2003,
abstract = {The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.},
author = {Horňák, Mirko, Pčola, Štefan},
journal = {Czechoslovak Mathematical Journal},
keywords = {complete vertex colouring; achromatic number; Cartesian product; complete graph; complete vertex colouring; achromatic number; Cartesian product; complete graph},
language = {eng},
number = {4},
pages = {963-988},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Achromatic number of $K_5 \times K_n$ for small $n$},
url = {http://eudml.org/doc/30828},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Horňák, Mirko
AU - Pčola, Štefan
TI - Achromatic number of $K_5 \times K_n$ for small $n$
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 963
EP - 988
AB - The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
LA - eng
KW - complete vertex colouring; achromatic number; Cartesian product; complete graph; complete vertex colouring; achromatic number; Cartesian product; complete graph
UR - http://eudml.org/doc/30828
ER -
References
top- Indice achromatique des graphes multiparti complets et réguliers, Cahiers Centre Études Rech. Opér. 20 (1978), 331–340. (1978) Zbl0404.05026MR0543176
- On the achromatic number of the Cartesian product , Australas. J. Combin. 6 (1992), 111–117. (1992) MR1196112
- 10.1016/0012-365X(93)E0207-K, Discrete Math. 141 (1995), 61–66. (1995) MR1336673DOI10.1016/0012-365X(93)E0207-K
- The harmonious chromatic number and the achromatic number, In: Surveys in Combinatorics 1997. London Math. Soc. Lect. Notes Series 241, R. A. Bailey (ed.), Cambridge University Press, 1997, pp. 13–47. (1997) Zbl0882.05062MR1477743
- An interpolation theorem for graphical homomorphisms, Portug. Math. 26 (1967), 454–462. (1967) MR0272662
- 10.1016/S0012-365X(00)00399-X, Discrete Math. 234 (2001), 159–169. (2001) MR1826830DOI10.1016/S0012-365X(00)00399-X
- On the achromatic number of , In: Graphs and Other Combinatorial Topics. Proceedings of the Third Czechoslovak Symposium on Graph Theory, Prague, August 24–27, 1982, M. Fiedler (ed.), Teubner, Leipzig, 1983, pp. 118–123. (1983) MR0737024
- 10.1137/0138030, SIAM J. Appl. Math. 38 (1980), 364–372. (1980) MR0579424DOI10.1137/0138030
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.