On Pettis integrability
Czechoslovak Mathematical Journal (2003)
- Volume: 53, Issue: 4, page 1009-1015
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFerrando, Juan Carlos. "On Pettis integrability." Czechoslovak Mathematical Journal 53.4 (2003): 1009-1015. <http://eudml.org/doc/30831>.
@article{Ferrando2003,
abstract = {Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _\{\infty \}$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.},
author = {Ferrando, Juan Carlos},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis integrable function space; copy of $c_0$; copy of $\ell _\{\infty \}$; countably additive vector measure; WRNP; CRP; Pettis integrable function space; copy of ; copy of ; countably additive vector measure; WRNP; CRP},
language = {eng},
number = {4},
pages = {1009-1015},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Pettis integrability},
url = {http://eudml.org/doc/30831},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Ferrando, Juan Carlos
TI - On Pettis integrability
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 1009
EP - 1015
AB - Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
LA - eng
KW - Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP; Pettis integrable function space; copy of ; copy of ; countably additive vector measure; WRNP; CRP
UR - http://eudml.org/doc/30831
ER -
References
top- Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676, Springer, 1997. (1997) MR1489231
- Sequences and Series in Banach Spaces. GTM 92, Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984. (1984) MR0737004
- Vector Measures. Math Surveys 15, Amer. Math. Soc. Providence, 1977. (1977) MR0453964
- 10.1017/S0305004100069401, Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526. (1990) MR1068453DOI10.1017/S0305004100069401
- 10.1090/S0002-9939-1992-1107271-2, Proc. Amer. Math. Soc. 114 (1992), 687–694. (1992) MR1107271DOI10.1090/S0002-9939-1992-1107271-2
- Characterizations of Banach Spaces not containing . CWI Tract, Amsterdam, 1989. (1989) MR1002733
- 10.2989/16073600209486018, Quaestiones Math. 25 (2002), 311–316. (2002) Zbl1036.46010MR1931282DOI10.2989/16073600209486018
- 10.1080/16073606.1998.9632045, Quaestiones Math. 21 (1998), 261–267. (1998) Zbl0963.46025MR1701785DOI10.1080/16073606.1998.9632045
- Real and Abstract Analysis. GTM 25, Springer Verlag, 1965. (1965) MR0367121
- 10.4064/sm-64-2-151-174, Studia Math. 64 (1979), 151–173. (1979) Zbl0405.46015MR0537118DOI10.4064/sm-64-2-151-174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.