On Pettis integrability

Juan Carlos Ferrando

Czechoslovak Mathematical Journal (2003)

  • Volume: 53, Issue: 4, page 1009-1015
  • ISSN: 0011-4642

Abstract

top
Assuming that ( Ω , Σ , μ ) is a complete probability space and X a Banach space, in this paper we investigate the problem of the X -inheritance of certain copies of c 0 or in the linear space of all [classes of] X -valued μ -weakly measurable Pettis integrable functions equipped with the usual semivariation norm.

How to cite

top

Ferrando, Juan Carlos. "On Pettis integrability." Czechoslovak Mathematical Journal 53.4 (2003): 1009-1015. <http://eudml.org/doc/30831>.

@article{Ferrando2003,
abstract = {Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _\{\infty \}$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.},
author = {Ferrando, Juan Carlos},
journal = {Czechoslovak Mathematical Journal},
keywords = {Pettis integrable function space; copy of $c_0$; copy of $\ell _\{\infty \}$; countably additive vector measure; WRNP; CRP; Pettis integrable function space; copy of ; copy of ; countably additive vector measure; WRNP; CRP},
language = {eng},
number = {4},
pages = {1009-1015},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Pettis integrability},
url = {http://eudml.org/doc/30831},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Ferrando, Juan Carlos
TI - On Pettis integrability
JO - Czechoslovak Mathematical Journal
PY - 2003
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 1009
EP - 1015
AB - Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
LA - eng
KW - Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP; Pettis integrable function space; copy of ; copy of ; countably additive vector measure; WRNP; CRP
UR - http://eudml.org/doc/30831
ER -

References

top
  1. Banach Spaces of Vector-Valued Functions. Lecture Notes in Math. 1676, Springer, 1997. (1997) MR1489231
  2. Sequences and Series in Banach Spaces. GTM 92, Springer Verlag. New York-Berlin-Heidelberg-Tokyo, 1984. (1984) MR0737004
  3. Vector Measures. Math Surveys 15, Amer. Math. Soc. Providence, 1977. (1977) MR0453964
  4. 10.1017/S0305004100069401, Math. Proc. Camb. Phil. Soc. 108 (1990), 523–526. (1990) MR1068453DOI10.1017/S0305004100069401
  5. 10.1090/S0002-9939-1992-1107271-2, Proc. Amer. Math. Soc. 114 (1992), 687–694. (1992) MR1107271DOI10.1090/S0002-9939-1992-1107271-2
  6. Characterizations of Banach Spaces not containing 1 . CWI Tract, Amsterdam, 1989. (1989) MR1002733
  7. 10.2989/16073600209486018, Quaestiones Math. 25 (2002), 311–316. (2002) Zbl1036.46010MR1931282DOI10.2989/16073600209486018
  8. 10.1080/16073606.1998.9632045, Quaestiones Math. 21 (1998), 261–267. (1998) Zbl0963.46025MR1701785DOI10.1080/16073606.1998.9632045
  9. Real and Abstract Analysis. GTM 25, Springer Verlag, 1965. (1965) MR0367121
  10. 10.4064/sm-64-2-151-174, Studia Math. 64 (1979), 151–173. (1979) Zbl0405.46015MR0537118DOI10.4064/sm-64-2-151-174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.