Banach and statistical cores of bounded sequences

Cihan Orhan; Şeyhmus Yardimci

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 1, page 65-72
  • ISSN: 0011-4642

Abstract

top
In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.

How to cite

top

Orhan, Cihan, and Yardimci, Şeyhmus. "Banach and statistical cores of bounded sequences." Czechoslovak Mathematical Journal 54.1 (2004): 65-72. <http://eudml.org/doc/30837>.

@article{Orhan2004,
abstract = {In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.},
author = {Orhan, Cihan, Yardimci, Şeyhmus},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost convergent sequence; statistically convergent sequence; core of a sequence; almost convergent sequence; statistically convergent sequence; core of a sequence},
language = {eng},
number = {1},
pages = {65-72},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Banach and statistical cores of bounded sequences},
url = {http://eudml.org/doc/30837},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Orhan, Cihan
AU - Yardimci, Şeyhmus
TI - Banach and statistical cores of bounded sequences
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 65
EP - 72
AB - In this paper, we are mainly concerned with characterizing matrices that map every bounded sequence into one whose Banach core is a subset of the statistical core of the original sequence.
LA - eng
KW - almost convergent sequence; statistically convergent sequence; core of a sequence; almost convergent sequence; statistically convergent sequence; core of a sequence
UR - http://eudml.org/doc/30837
ER -

References

top
  1. An extension of Knopp’s Core Theorem, J. Math. Appl. 132 (1988), 226–233. (1988) Zbl0648.40004MR0942366
  2. 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) MR0954458DOI10.1524/anly.1988.8.12.47
  3. Infinite Matrices and Sequence Spaces, Macmillan, , 1950. (1950) Zbl0040.02501MR0040451
  4. Sublinear functionals and a class of conservative Matrices, Bull. Inst. Math. Acad. Sinica 15 (1987), 89–106. (1987) Zbl0632.46008MR0947779
  5. 10.1017/S0305004100058291, Math. Proc. Camb. Phil. Soc. 89 (1981), 393–396. (1981) MR0602293DOI10.1017/S0305004100058291
  6. 10.1515/dema-2000-0216, Demonstratio Math. 33 (2000), 343–353. (2000) Zbl0959.40001MR1769428DOI10.1515/dema-2000-0216
  7. 10.1007/BF01111514, Math. Z. 128 (1972), 75–83. (1972) Zbl0228.40005MR0340881DOI10.1007/BF01111514
  8. 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
  9. 10.1090/S0002-9939-1993-1181163-6, Proc. Amer. Math. Soc. 118 (1993), 1187–1192. (1993) Zbl0776.40001MR1181163DOI10.1090/S0002-9939-1993-1181163-6
  10. 10.1090/S0002-9939-97-04000-8, Proc. Amer. Math. Soc. 125 (1997), 3625–3631. (1997) MR1416085DOI10.1090/S0002-9939-97-04000-8
  11. 10.1006/jmaa.1997.5350, J.  Math. Anal. Appl. 208 (1997), 520–527. (1997) MR1441452DOI10.1006/jmaa.1997.5350
  12. 10.4153/CJM-1957-012-x, Canad. J. Math. 9 (1957), 79–89. (1957) Zbl0077.31004MR0083697DOI10.4153/CJM-1957-012-x
  13. Almost summable sequences, Proc. Amer. Math. Soc. 17 (1996), 1219–1225. (1996) MR0201872
  14. 10.1007/BF01246399, Math. Z. 31 (1930), 97–127. (1930) MR1545100DOI10.1007/BF01246399
  15. 10.1524/anly.1993.13.12.77, Analysis 13 (1993), 77–83. (1993) Zbl0801.40005MR1245744DOI10.1524/anly.1993.13.12.77
  16. 10.1524/anly.2000.20.1.15, Analysis 20 (2000), 15–34. (2000) MR1757066DOI10.1524/anly.2000.20.1.15
  17. Knopp’s core and almost-convergence core in the space m , Tartu Riikl. All. Toimetised 335 (1975), 148–156. (1975) MR0380356
  18. 10.1007/BF02393648, Acta Math. 80 (1948), 167–190. (1948) Zbl0031.29501MR0027868DOI10.1007/BF02393648
  19. 10.1155/S0161171279000454, Internat. J.  Math. Math. Sci. 2 (1979), 605–614. (1979) Zbl0416.40004MR0549529DOI10.1155/S0161171279000454
  20. 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
  21. 10.1023/A:1013877718406, Acta Math. Hungar. 93 (2001), 149–165. (2001) MR1924673DOI10.1023/A:1013877718406
  22. An Introduction to the Theory of Numbers, Fifth Ed, Wiley, New York, 1991. (1991) MR1083765
  23. 10.1155/S0161171290000680, Internat. J.  Math. Math. Sci. 13 (1990), 461–468. (1990) MR1068009DOI10.1155/S0161171290000680
  24. Regular Matrix Transformations, McGraw-Hill, London, 1966. (1966) Zbl0159.35401MR0225045
  25. On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
  26. 10.1016/0022-247X(69)90203-0, J.  Math. Anal. Appl. 26 (1969), 640–655. (1969) Zbl0176.46001MR0241957DOI10.1016/0022-247X(69)90203-0
  27. Core theorems for real bounded sequences, Indian J.  Pure Appl. Math. 27 (1996), 861–867. (1996) Zbl0862.40002MR1407221

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.