Almost π -lattices

C. Jayaram

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 1, page 119-130
  • ISSN: 0011-4642

Abstract

top
In this paper we establish some conditions for an almost π -domain to be a π -domain. Next π -lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for π -rings.

How to cite

top

Jayaram, C.. "Almost $\pi $-lattices." Czechoslovak Mathematical Journal 54.1 (2004): 119-130. <http://eudml.org/doc/30843>.

@article{Jayaram2004,
abstract = {In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings.},
author = {Jayaram, C.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element; -domain; almost -domain; -ring; -prime element},
language = {eng},
number = {1},
pages = {119-130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Almost $\pi $-lattices},
url = {http://eudml.org/doc/30843},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Jayaram, C.
TI - Almost $\pi $-lattices
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 119
EP - 130
AB - In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings.
LA - eng
KW - $\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element; -domain; almost -domain; -ring; -prime element
UR - http://eudml.org/doc/30843
ER -

References

top
  1. 10.1007/BF01876923, Period. Math. Hungar. 30 (1995), 1–26. (1995) MR1318850DOI10.1007/BF01876923
  2. 10.1007/BF02485825, Algebra Universalis 6 (1976), 131–145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
  3. Baer lattices, Acta. Sci. Math. (Szeged) 59 (1994), 61–74. (1994) MR1285430
  4. Principal element lattices, Czechoslovak Math. J. 46(121) (1996), 99–109. (1996) MR1371692
  5. 10.1007/BF01236764, Algebra Universalis 36 (1996), 392–404. (1996) MR1408734DOI10.1007/BF01236764
  6. 10.2140/pjm.1962.12.481, Pacific J. Math. 12 (1962), 481–498. (1962) Zbl0111.04104MR0143781DOI10.2140/pjm.1962.12.481
  7. Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
  8. 10.1016/0021-8693(81)90313-6, J. Algebra 72 (1981), 101–114. (1981) MR0634618DOI10.1016/0021-8693(81)90313-6
  9. 10.1155/S0161171295000676, Internat. J. Math. Math. Sci. 18 (1995), 535–538. (1995) MR1331954DOI10.1155/S0161171295000676
  10. 10.1007/BF01876351, Period. Math. Hungar. 31 (1995), 33–42. (1995) MR1349291DOI10.1007/BF01876351
  11. 10.1007/BF01882195, Period. Math. Hungar. 31 (1995), 201–208. (1995) MR1610262DOI10.1007/BF01882195
  12. Dedekind lattices, Acta. Sci. Math. (Szeged) 63 (1997), 367–378. (1997) MR1480486
  13. 10.1023/A:1022475220032, Czechoslovak Math.  J. 48(123) (1998), 641–651. (1998) MR1658225DOI10.1023/A:1022475220032
  14. 10.1016/0021-8693(89)90131-2, J. Algebra 124 (1989), 284–299. (1989) MR1011595DOI10.1016/0021-8693(89)90131-2
  15. Multiplicative Theory of Ideals, Academic Press, New York, 1971. (1971) MR0414528
  16. A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380. (1972) MR0294312
  17. 10.1090/S0002-9939-1971-0279080-4, Proc. Amer. Math. Soc. 30 (1971), 43–45. (1971) Zbl0218.13001MR0279080DOI10.1090/S0002-9939-1971-0279080-4
  18. Abstract spectral theory. II.  Minimal characters and minimal spectrums of multiplicative lattices, Acta. Sci. Math. (Szeged) 52 (1988), 53–67. (1988) MR0957788

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.