Almost -lattices
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 1, page 119-130
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJayaram, C.. "Almost $\pi $-lattices." Czechoslovak Mathematical Journal 54.1 (2004): 119-130. <http://eudml.org/doc/30843>.
@article{Jayaram2004,
abstract = {In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings.},
author = {Jayaram, C.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element; -domain; almost -domain; -ring; -prime element},
language = {eng},
number = {1},
pages = {119-130},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Almost $\pi $-lattices},
url = {http://eudml.org/doc/30843},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Jayaram, C.
TI - Almost $\pi $-lattices
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 119
EP - 130
AB - In this paper we establish some conditions for an almost $\pi $-domain to be a $\pi $-domain. Next $\pi $-lattices satisfying the union condition on primes are characterized. Using these results, some new characterizations are given for $\pi $-rings.
LA - eng
KW - $\pi $-domain; almost $\pi $-domain; $\pi $-ring; $d$-prime element; -domain; almost -domain; -ring; -prime element
UR - http://eudml.org/doc/30843
ER -
References
top- 10.1007/BF01876923, Period. Math. Hungar. 30 (1995), 1–26. (1995) MR1318850DOI10.1007/BF01876923
- 10.1007/BF02485825, Algebra Universalis 6 (1976), 131–145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
- Baer lattices, Acta. Sci. Math. (Szeged) 59 (1994), 61–74. (1994) MR1285430
- Principal element lattices, Czechoslovak Math. J. 46(121) (1996), 99–109. (1996) MR1371692
- 10.1007/BF01236764, Algebra Universalis 36 (1996), 392–404. (1996) MR1408734DOI10.1007/BF01236764
- 10.2140/pjm.1962.12.481, Pacific J. Math. 12 (1962), 481–498. (1962) Zbl0111.04104MR0143781DOI10.2140/pjm.1962.12.481
- Multiplicative Ideal Theory, Marcel Dekker, New York, 1972. (1972) Zbl0248.13001MR0427289
- 10.1016/0021-8693(81)90313-6, J. Algebra 72 (1981), 101–114. (1981) MR0634618DOI10.1016/0021-8693(81)90313-6
- 10.1155/S0161171295000676, Internat. J. Math. Math. Sci. 18 (1995), 535–538. (1995) MR1331954DOI10.1155/S0161171295000676
- 10.1007/BF01876351, Period. Math. Hungar. 31 (1995), 33–42. (1995) MR1349291DOI10.1007/BF01876351
- 10.1007/BF01882195, Period. Math. Hungar. 31 (1995), 201–208. (1995) MR1610262DOI10.1007/BF01882195
- Dedekind lattices, Acta. Sci. Math. (Szeged) 63 (1997), 367–378. (1997) MR1480486
- 10.1023/A:1022475220032, Czechoslovak Math. J. 48(123) (1998), 641–651. (1998) MR1658225DOI10.1023/A:1022475220032
- 10.1016/0021-8693(89)90131-2, J. Algebra 124 (1989), 284–299. (1989) MR1011595DOI10.1016/0021-8693(89)90131-2
- Multiplicative Theory of Ideals, Academic Press, New York, 1971. (1971) MR0414528
- A characterization of general ZPI-rings, Proc. Amer. Math. Soc. 32 (1972), 376–380. (1972) MR0294312
- 10.1090/S0002-9939-1971-0279080-4, Proc. Amer. Math. Soc. 30 (1971), 43–45. (1971) Zbl0218.13001MR0279080DOI10.1090/S0002-9939-1971-0279080-4
- Abstract spectral theory. II. Minimal characters and minimal spectrums of multiplicative lattices, Acta. Sci. Math. (Szeged) 52 (1988), 53–67. (1988) MR0957788
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.