On super hamiltonian semigroups
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 1, page 247-252
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topShum, Kar-Ping, and Ren, X. M.. "On super hamiltonian semigroups." Czechoslovak Mathematical Journal 54.1 (2004): 247-252. <http://eudml.org/doc/30854>.
@article{Shum2004,
abstract = {The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.},
author = {Shum, Kar-Ping, Ren, X. M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {quasi hamiltonian semigroups; super hamiltonian semigroups; quasi commutative semigroups; quasi-groups; strong semilattices of semigroups; super-Hamiltonian semigroups; quasi-commutative semigroups; strong semilattices of semigroups; generalized quasi-Hamiltonian semigroups; idempotents},
language = {eng},
number = {1},
pages = {247-252},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On super hamiltonian semigroups},
url = {http://eudml.org/doc/30854},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Shum, Kar-Ping
AU - Ren, X. M.
TI - On super hamiltonian semigroups
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 247
EP - 252
AB - The concept of super hamiltonian semigroup is introduced. As a result, the structure theorems obtained by A. Cherubini and A. Varisco on quasi commutative semigroups and quasi hamiltonian semigroups respectively are extended to super hamiltonian semigroups.
LA - eng
KW - quasi hamiltonian semigroups; super hamiltonian semigroups; quasi commutative semigroups; quasi-groups; strong semilattices of semigroups; super-Hamiltonian semigroups; quasi-commutative semigroups; strong semilattices of semigroups; generalized quasi-Hamiltonian semigroups; idempotents
UR - http://eudml.org/doc/30854
ER -
References
top- 10.4153/CMB-1972-033-3, Canad. Math. Bull. 15 (1972), 185–188. (1972) MR0306361DOI10.4153/CMB-1972-033-3
- 10.1007/BF02572524, Semigroup Forum 19 (1980), 313–321. (1980) MR0569810DOI10.1007/BF02572524
- Quasi hamoltoniam semigroups, Czechoslovak Math. J. 33(108) (1983), 131–140. (1983) MR0687426
- On cyclic commutative po-semigroups, PU.M.A. 18 (1997), 261–273. (1997) MR1630495
- Quasi commutative primary semigroups, Mat. Vesnik 12 (1975), 271–278. (1975) Zbl0317.20037MR0382504
- Quasi commutative semigroups I, Czechoslovak Math. J. 22(97) (1972), 449–453. (1972) MR0308301
- 10.1007/BF02195752, Semigroup Forum 15 (1978), 189–193. (1978) Zbl0378.20046MR0473062DOI10.1007/BF02195752
- Lectures in Semigroups, Akademie Verlag, Berlin, 1977. (1977) Zbl0369.20036MR0447437
- On weakly commutative semigroups, Czechoslovak. Math. J. 25(100) (1975), 20–23. (1975) MR0387460
- 10.1007/BF02389126, Semigroup Forum 6 (1973), 232–239. (1973) MR0374303DOI10.1007/BF02389126
- On Quasi-Left Groups, Groups-Korea’94, Walter de Gruyter & Co., Berlin, New York, 1995, pp. 285–288. (1995) MR1476972
- Regular semigroups and its generalizations, Lecture Series 181 (Pure & Applied Math.), Marcell Dekker INC., 1996, pp. 181–225. (1996) MR1408694
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.