On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support

M. Belhadj; Jorge J. Betancor

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 315-336
  • ISSN: 0011-4642

Abstract

top
In this paper we study Beurling type distributions in the Hankel setting. We consider the space ( w ) ' of Beurling type distributions on ( 0 , ) having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space ( w ) ' . We also establish Paley Wiener type theorems for Hankel transformations of distributions in ( w ) ' .

How to cite

top

Belhadj, M., and Betancor, Jorge J.. "On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support." Czechoslovak Mathematical Journal 54.2 (2004): 315-336. <http://eudml.org/doc/30862>.

@article{Belhadj2004,
abstract = {In this paper we study Beurling type distributions in the Hankel setting. We consider the space $\{\mathcal \{E\}\}(w)^\{\prime \}$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space $\{\mathcal \{E\}\}(w)^\{\prime \}$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in $\{\mathcal \{E\}\}(w)^\{\prime \}$.},
author = {Belhadj, M., Betancor, Jorge J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Beurling distributions; Hankel transformation; convolution; Beurling distributions; Hankel transform; convolution},
language = {eng},
number = {2},
pages = {315-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support},
url = {http://eudml.org/doc/30862},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Belhadj, M.
AU - Betancor, Jorge J.
TI - On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 315
EP - 336
AB - In this paper we study Beurling type distributions in the Hankel setting. We consider the space ${\mathcal {E}}(w)^{\prime }$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space ${\mathcal {E}}(w)^{\prime }$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in ${\mathcal {E}}(w)^{\prime }$.
LA - eng
KW - Beurling distributions; Hankel transformation; convolution; Beurling distributions; Hankel transform; convolution
UR - http://eudml.org/doc/30862
ER -

References

top
  1. Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall Ω = ( 0 , ) un derem Dualraumen, Math. Nachr. 108 (1982), 197–218. (1982) MR0695127
  2. Beurling distributions and Hankel transforms, Math. Nachr 233-234 (2002), 19–45. (2002) MR1879861
  3. 10.1216/rmjm/1021249437, Rocky Mountain J.  Math 31 (2001), 1171–1203. (2001) MR1895292DOI10.1216/rmjm/1021249437
  4. The Hankel convolution and the Zemanian spaces  B μ and B μ ' , Math. Nachr. 160 (1993), 277–298. (1993) MR1245003
  5. Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 38 (1993), 1141–1155. (1993) MR1250341
  6. 10.1080/10652469508819075, Integral Transforms and Special Functions 3 (1995), 175–200. (1995) MR1619757DOI10.1080/10652469508819075
  7. 10.4064/sm-121-1-35-52, Studia Math. 121 (1996), 35–52. (1996) MR1414893DOI10.4064/sm-121-1-35-52
  8. Quasi-analyticity and General Distributions. Lectures  4 and 5, A.M.S. Summer Institute, Stanford, 1961. (1961) 
  9. 10.1007/BF02590963, Ark. Math. 6 (1966), 351–407. (1966) MR0203201DOI10.1007/BF02590963
  10. Characterization of the w -hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261–284. (2000) MR1762416
  11. 10.1007/BF01199116, Arch. Math. 55 (1990), 55–63. (1990) MR1059516DOI10.1007/BF01199116
  12. 10.1007/BF03322459, Results in Maths. 17 (1990), 206–237. (1990) MR1052587DOI10.1007/BF03322459
  13. A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58 (1965). (1965) Zbl0137.30901MR0180813
  14. The Hankel transformation and spaces of type  W . Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988. (1988) 
  15. 10.1090/S0002-9947-1965-0185379-4, Trans. Amer. Math. Soc. 116 (1965), 330–375. (1965) Zbl0135.33502MR0185379DOI10.1090/S0002-9947-1965-0185379-4
  16. On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999. (1954) Zbl0059.09901MR0063477
  17. Variation diminishing Hankel transforms, J.  Analyse Math. 8 (1960/61), 307–336. (1960/61) MR0157197
  18. 10.7146/math.scand.a-10633, Math. Scand. 9 (1961), 178–184. (1961) MR0139838DOI10.7146/math.scand.a-10633
  19. Hankel convolution of generalized functions, Rendiconti di Matematica 15 (1995), 351–380. (1995) MR1362778
  20. 10.1002/mana.19881360116, Math. Nachr. 136 (1988), 233–239. (1988) MR0952475DOI10.1002/mana.19881360116
  21. 10.1524/anly.1993.13.12.1, Analysis 13 (1993), 1–18. (1993) DOI10.1524/anly.1993.13.12.1
  22. Theorie des distributions, Hermann, Paris, 1978. (1978) Zbl0399.46028MR0209834
  23. 10.1137/0516097, SIAM J.  Appl. Math. 16 (1985), 1335–1346. (1985) Zbl0592.46038MR0807914DOI10.1137/0516097
  24. La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R.  Acad. Sci. Paris 303 (Serie  I) (1986), 15–19. (1986) Zbl0591.42014MR0849618
  25. A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1959. (1959) MR1349110
  26. 10.1137/0114049, SIAM J.  Appl. Math. 14 (1966), 561–576. (1966) Zbl0154.13803MR0201930DOI10.1137/0114049
  27. 10.1137/0114056, SIAM J.  Appl. Math. 14 (1966), 678–690. (1966) MR0211211DOI10.1137/0114056
  28. Generalized Integral Transformations, Interscience Publishers, New York, 1968. (1968) Zbl0181.12701MR0423007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.