On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 315-336
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBelhadj, M., and Betancor, Jorge J.. "On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support." Czechoslovak Mathematical Journal 54.2 (2004): 315-336. <http://eudml.org/doc/30862>.
@article{Belhadj2004,
abstract = {In this paper we study Beurling type distributions in the Hankel setting. We consider the space $\{\mathcal \{E\}\}(w)^\{\prime \}$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space $\{\mathcal \{E\}\}(w)^\{\prime \}$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in $\{\mathcal \{E\}\}(w)^\{\prime \}$.},
author = {Belhadj, M., Betancor, Jorge J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Beurling distributions; Hankel transformation; convolution; Beurling distributions; Hankel transform; convolution},
language = {eng},
number = {2},
pages = {315-336},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support},
url = {http://eudml.org/doc/30862},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Belhadj, M.
AU - Betancor, Jorge J.
TI - On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 315
EP - 336
AB - In this paper we study Beurling type distributions in the Hankel setting. We consider the space ${\mathcal {E}}(w)^{\prime }$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space ${\mathcal {E}}(w)^{\prime }$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in ${\mathcal {E}}(w)^{\prime }$.
LA - eng
KW - Beurling distributions; Hankel transformation; convolution; Beurling distributions; Hankel transform; convolution
UR - http://eudml.org/doc/30862
ER -
References
top- Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall un derem Dualraumen, Math. Nachr. 108 (1982), 197–218. (1982) MR0695127
- Beurling distributions and Hankel transforms, Math. Nachr 233-234 (2002), 19–45. (2002) MR1879861
- 10.1216/rmjm/1021249437, Rocky Mountain J. Math 31 (2001), 1171–1203. (2001) MR1895292DOI10.1216/rmjm/1021249437
- The Hankel convolution and the Zemanian spaces and , Math. Nachr. 160 (1993), 277–298. (1993) MR1245003
- Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 38 (1993), 1141–1155. (1993) MR1250341
- 10.1080/10652469508819075, Integral Transforms and Special Functions 3 (1995), 175–200. (1995) MR1619757DOI10.1080/10652469508819075
- 10.4064/sm-121-1-35-52, Studia Math. 121 (1996), 35–52. (1996) MR1414893DOI10.4064/sm-121-1-35-52
- Quasi-analyticity and General Distributions. Lectures 4 and 5, A.M.S. Summer Institute, Stanford, 1961. (1961)
- 10.1007/BF02590963, Ark. Math. 6 (1966), 351–407. (1966) MR0203201DOI10.1007/BF02590963
- Characterization of the -hypoelliptic convolution operators on ultradistributions, Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261–284. (2000) MR1762416
- 10.1007/BF01199116, Arch. Math. 55 (1990), 55–63. (1990) MR1059516DOI10.1007/BF01199116
- 10.1007/BF03322459, Results in Maths. 17 (1990), 206–237. (1990) MR1052587DOI10.1007/BF03322459
- A Hankel convolution complex inversion theory, Mem. Amer. Math. Soc. 58 (1965). (1965) Zbl0137.30901MR0180813
- The Hankel transformation and spaces of type . Reports on Appl. and Numer. Analysis, 10, Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988. (1988)
- 10.1090/S0002-9947-1965-0185379-4, Trans. Amer. Math. Soc. 116 (1965), 330–375. (1965) Zbl0135.33502MR0185379DOI10.1090/S0002-9947-1965-0185379-4
- On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999. (1954) Zbl0059.09901MR0063477
- Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307–336. (1960/61) MR0157197
- 10.7146/math.scand.a-10633, Math. Scand. 9 (1961), 178–184. (1961) MR0139838DOI10.7146/math.scand.a-10633
- Hankel convolution of generalized functions, Rendiconti di Matematica 15 (1995), 351–380. (1995) MR1362778
- 10.1002/mana.19881360116, Math. Nachr. 136 (1988), 233–239. (1988) MR0952475DOI10.1002/mana.19881360116
- 10.1524/anly.1993.13.12.1, Analysis 13 (1993), 1–18. (1993) DOI10.1524/anly.1993.13.12.1
- Theorie des distributions, Hermann, Paris, 1978. (1978) Zbl0399.46028MR0209834
- 10.1137/0516097, SIAM J. Appl. Math. 16 (1985), 1335–1346. (1985) Zbl0592.46038MR0807914DOI10.1137/0516097
- La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C.R. Acad. Sci. Paris 303 (Serie I) (1986), 15–19. (1986) Zbl0591.42014MR0849618
- A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1959. (1959) MR1349110
- 10.1137/0114049, SIAM J. Appl. Math. 14 (1966), 561–576. (1966) Zbl0154.13803MR0201930DOI10.1137/0114049
- 10.1137/0114056, SIAM J. Appl. Math. 14 (1966), 678–690. (1966) MR0211211DOI10.1137/0114056
- Generalized Integral Transformations, Interscience Publishers, New York, 1968. (1968) Zbl0181.12701MR0423007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.