Totally real submanifolds in a quaternion space form

Mehmet Bektaş

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 341-346
  • ISSN: 0011-4642

Abstract

top
In this paper, we prove a theorem for n -dimensional totally real minimal submanifold immersed in quaternion space form.

How to cite

top

Bektaş, Mehmet. "Totally real submanifolds in a quaternion space form." Czechoslovak Mathematical Journal 54.2 (2004): 341-346. <http://eudml.org/doc/30864>.

@article{Bektaş2004,
abstract = {In this paper, we prove a theorem for $n$-dimensional totally real minimal submanifold immersed in quaternion space form.},
author = {Bektaş, Mehmet},
journal = {Czechoslovak Mathematical Journal},
keywords = {totally real submanifold; quaternion space form; totally real submanifold; quaternion space form},
language = {eng},
number = {2},
pages = {341-346},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Totally real submanifolds in a quaternion space form},
url = {http://eudml.org/doc/30864},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Bektaş, Mehmet
TI - Totally real submanifolds in a quaternion space form
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 341
EP - 346
AB - In this paper, we prove a theorem for $n$-dimensional totally real minimal submanifold immersed in quaternion space form.
LA - eng
KW - totally real submanifold; quaternion space form; totally real submanifold; quaternion space form
UR - http://eudml.org/doc/30864
ER -

References

top
  1. Compact space-like submanifolds with parallel mean curvature vector of a Pseudo-Riemannian space, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 38 (1999), 17–24. (1999) MR1767186
  2. 10.1090/S0002-9947-1974-0346708-7, Trans. Amer. Math. Soc. 193 (1974), 257–266. (1974) MR0346708DOI10.1090/S0002-9947-1974-0346708-7
  3. 10.1007/BF02411943, Ann. Math. Pura Appl. 120 (1979), 185–199. (1979) MR0551066DOI10.1007/BF02411943
  4. Totally real minimal submanifolds in a quaternion projective space, Chinese Ann. Math. Ser.B 14 (1993), 297–306. (1993) Zbl0811.53061MR1264303
  5. Minimal submanifolds of a sphere with second fundamental form of constant length, functional analysis and related fields, Proc. Conf. for M. Stone, Univ. Chicago, 1968. Vol III, Springer-Verlag, New York, 1970, pp. 59–75. (1970) MR0273546
  6. 10.1017/S0017089500032390, Glasgow Math. J. 40 (1998), 109–115. (1998) Zbl0907.53038MR1612102DOI10.1017/S0017089500032390
  7. 10.1155/S0161171299222053, Internat. J. Math. Math. Sci. 22 (1999), 205–208. (1999) Zbl0916.53027MR1684368DOI10.1155/S0161171299222053
  8. Totally real submanifolds in H P m ( 1 ) with isotropic second fundamental form, Saitama Math. J. 16 (1998), 23–29. (1998) MR1702177
  9. 10.3792/pjaa.72.238, Proc. Japan. Acad. Ser. A-Math. Sci. 72 (1996), 238–239. (1996) Zbl0877.53043MR1435727DOI10.3792/pjaa.72.238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.