Integral multilinear forms on C ( K , X ) spaces

Ignacio Villanueva

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 373-378
  • ISSN: 0011-4642

Abstract

top
We use polymeasures to characterize when a multilinear form defined on a product of C ( K , X ) spaces is integral.

How to cite

top

Villanueva, Ignacio. "Integral multilinear forms on $C(K,X)$ spaces." Czechoslovak Mathematical Journal 54.2 (2004): 373-378. <http://eudml.org/doc/30866>.

@article{Villanueva2004,
abstract = {We use polymeasures to characterize when a multilinear form defined on a product of $C(K,X)$ spaces is integral.},
author = {Villanueva, Ignacio},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral multilinear forms; spaces of continuous functions; injective tensor product; integral multilinear forms; spaces of continuous functions; injective tensor product},
language = {eng},
number = {2},
pages = {373-378},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Integral multilinear forms on $C(K,X)$ spaces},
url = {http://eudml.org/doc/30866},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Villanueva, Ignacio
TI - Integral multilinear forms on $C(K,X)$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 373
EP - 378
AB - We use polymeasures to characterize when a multilinear form defined on a product of $C(K,X)$ spaces is integral.
LA - eng
KW - integral multilinear forms; spaces of continuous functions; injective tensor product; integral multilinear forms; spaces of continuous functions; injective tensor product
UR - http://eudml.org/doc/30866
ER -

References

top
  1. Multilinear measure theory and the Grothendieck factorization theorem, Proc. London Math. Soc. 56 (1988), 529–546. (1988) MR0931513
  2. Medidas vectoriales y espacios de funciones continuas. Publicaciones del Departamento de Análisis Matemático, Fac. de Matemáticas, Universidad Complutense de Madrid, 1984. (1984) 
  3. 10.1006/jmaa.2001.7648, J.  Math. Anal. Appl. 264 (2001), 107–121. (2001) MR1868331DOI10.1006/jmaa.2001.7648
  4. Vector Measures. Mathematical Surveys, No.  15, American Math. Soc., Providence, 1977. (1977) MR0453964
  5. Vector Measures, Pergamon Press, Oxford-New York-Toronto, 1967. (1967) MR0206190
  6. Bimeasures in Banach spaces, Preprint. MR1849394
  7. On integration in Banach spaces, VIII (polymeasures), Czechoslovak Math.  J. 37 (112) (1987), 487–506. (1987) Zbl0688.28002MR0904773
  8. Representation of multilinear operators on × C 0 ( T i , X i ) . I, Atti Sem. Mat. Fis. Univ. Modena XXXIX (1991), 131–138. (1991) MR1111763
  9. 10.1017/S0004972700009904, Bull. Austral. Math. Soc. 32 (1985), 207–215. (1985) Zbl0577.28002MR0815364DOI10.1017/S0004972700009904
  10. 10.1017/S1446788700034716, J.  Austral. Math. Soc. (Series  A) 56 (1994), 17–40. (1994) MR1250991DOI10.1017/S1446788700034716
  11. 10.1090/S0002-9939-1991-1039263-5, Proc. Amer. Math. Soc. 111 (1991), 1003–1013. (1991) MR1039263DOI10.1090/S0002-9939-1991-1039263-5
  12. 10.1023/B:CMAJ.0000027245.95757.ee, Czechoslovak Math.  J 54 (129) (2004), 31–54. (2004) MR2040217DOI10.1023/B:CMAJ.0000027245.95757.ee

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.