-statistically convergent function sequences
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 413-422
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDuman, Oktay, and Orhan, Cihan. "$\mu $-statistically convergent function sequences." Czechoslovak Mathematical Journal 54.2 (2004): 413-422. <http://eudml.org/doc/30871>.
@article{Duman2004,
abstract = {In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.},
author = {Duman, Oktay, Orhan, Cihan},
journal = {Czechoslovak Mathematical Journal},
keywords = {pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets; pointwise and uniform convergence; -statistical convergence; convergence in -density; finitely additive measure; additive property for null sets},
language = {eng},
number = {2},
pages = {413-422},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mu $-statistically convergent function sequences},
url = {http://eudml.org/doc/30871},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Duman, Oktay
AU - Orhan, Cihan
TI - $\mu $-statistically convergent function sequences
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 413
EP - 422
AB - In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.
LA - eng
KW - pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets; pointwise and uniform convergence; -statistical convergence; convergence in -density; finitely additive measure; additive property for null sets
UR - http://eudml.org/doc/30871
ER -
References
top- Elements of Real Analysis, John Wiley & Sons, Inc., New York, 1964. (1964) MR0393369
- 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458DOI10.1524/anly.1988.8.12.47
- 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373–385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
- -type summability methods, Cauchy criteria, -sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327. (1992) Zbl0765.40002MR1095221
- 10.2140/pjm.1993.157.201, Pacific J. Math. 157 (1993), 201–224. (1993) MR1197054DOI10.2140/pjm.1993.157.201
- A topological and functional analytic approach to statistical convergence, Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413. (1999) Zbl0915.40002MR1734462
- 10.1006/jmaa.1996.0027, J. Math. Anal. Appl. 197 (1996), 393–399. (1996) MR1372186DOI10.1006/jmaa.1996.0027
- 10.1006/jmaa.2000.6725, J. Math. Anal. Appl. 244 (2000), 251–261. (2000) MR1746802DOI10.1006/jmaa.2000.6725
- 10.1006/jmaa.1999.6371, J. Math. Anal. Appl. 235 (1999), 122–129. (1999) MR1758671DOI10.1006/jmaa.1999.6371
- 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
- 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
- 10.2140/pjm.1993.160.43, Pacific J. Math. 160 (1993), 43–51. (1993) MR1227502DOI10.2140/pjm.1993.160.43
- 10.1006/jmaa.1993.1082, J. Math. Anal. Appl. 173 (1993), 497–503. (1993) MR1209334DOI10.1006/jmaa.1993.1082
- 10.1006/jmaa.1998.6118, J. Math. Anal. Appl. 228 (1998), 73–95. (1998) MR1659877DOI10.1006/jmaa.1998.6118
- 10.1006/jmaa.1999.6533, J. Math. Anal. Appl. 238 (1999), 599–603. (1999) Zbl0939.40001MR1715505DOI10.1006/jmaa.1999.6533
- 10.1017/S0305004100065312, Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. (1988) Zbl0674.40008MR0938459DOI10.1017/S0305004100065312
- 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
- On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
- Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74. (1951)
- 10.2307/44153029, Real Anal. Exchange 25 (2000), 49–50. (2000) DOI10.2307/44153029
- Trigonometric Series. Second edition, Cambridge Univ. Press, Cambridge, 1979. (1979)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.