μ -statistically convergent function sequences

Oktay Duman; Cihan Orhan

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 413-422
  • ISSN: 0011-4642

Abstract

top
In the present paper we are concerned with convergence in μ -density and μ -statistical convergence of sequences of functions defined on a subset D of real numbers, where μ is a finitely additive measure. Particularly, we introduce the concepts of μ -statistical uniform convergence and μ -statistical pointwise convergence, and observe that μ -statistical uniform convergence inherits the basic properties of uniform convergence.

How to cite

top

Duman, Oktay, and Orhan, Cihan. "$\mu $-statistically convergent function sequences." Czechoslovak Mathematical Journal 54.2 (2004): 413-422. <http://eudml.org/doc/30871>.

@article{Duman2004,
abstract = {In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.},
author = {Duman, Oktay, Orhan, Cihan},
journal = {Czechoslovak Mathematical Journal},
keywords = {pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets; pointwise and uniform convergence; -statistical convergence; convergence in -density; finitely additive measure; additive property for null sets},
language = {eng},
number = {2},
pages = {413-422},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\mu $-statistically convergent function sequences},
url = {http://eudml.org/doc/30871},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Duman, Oktay
AU - Orhan, Cihan
TI - $\mu $-statistically convergent function sequences
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 413
EP - 422
AB - In the present paper we are concerned with convergence in $\mu $-density and $\mu $-statistical convergence of sequences of functions defined on a subset $D$ of real numbers, where $\mu $ is a finitely additive measure. Particularly, we introduce the concepts of $\mu $-statistical uniform convergence and $\mu $-statistical pointwise convergence, and observe that $\mu $-statistical uniform convergence inherits the basic properties of uniform convergence.
LA - eng
KW - pointwise and uniform convergence; $\mu $-statistical convergence; convergence in $\mu $-density; finitely additive measure; additive property for null sets; pointwise and uniform convergence; -statistical convergence; convergence in -density; finitely additive measure; additive property for null sets
UR - http://eudml.org/doc/30871
ER -

References

top
  1. Elements of Real Analysis, John Wiley & Sons, Inc., New York, 1964. (1964) MR0393369
  2. 10.1524/anly.1988.8.12.47, Analysis 8 (1988), 47–63. (1988) Zbl0653.40001MR0954458DOI10.1524/anly.1988.8.12.47
  3. 10.1524/anly.1990.10.4.373, Analysis 10 (1990), 373–385. (1990) Zbl0726.40009MR1085803DOI10.1524/anly.1990.10.4.373
  4. R -type summability methods, Cauchy criteria, P -sets and statistical convergence, Proc. Amer. Math. Soc. 115 (1992), 319–327. (1992) Zbl0765.40002MR1095221
  5. 10.2140/pjm.1993.157.201, Pacific J.  Math. 157 (1993), 201–224. (1993) MR1197054DOI10.2140/pjm.1993.157.201
  6. A topological and functional analytic approach to statistical convergence, Analysis of Divergence, Birkhäuser-Verlag, Boston, 1999, pp. 403–413. (1999) Zbl0915.40002MR1734462
  7. 10.1006/jmaa.1996.0027, J.  Math. Anal. Appl. 197 (1996), 393–399. (1996) MR1372186DOI10.1006/jmaa.1996.0027
  8. 10.1006/jmaa.2000.6725, J.  Math. Anal. Appl. 244 (2000), 251–261. (2000) MR1746802DOI10.1006/jmaa.2000.6725
  9. 10.1006/jmaa.1999.6371, J.  Math. Anal. Appl. 235 (1999), 122–129. (1999) MR1758671DOI10.1006/jmaa.1999.6371
  10. 10.4064/cm-2-3-4-241-244, Colloq. Math. 2 (1951), 241–244. (1951) Zbl0044.33605MR0048548DOI10.4064/cm-2-3-4-241-244
  11. 10.1524/anly.1985.5.4.301, Analysis 5 (1985), 301–313. (1985) Zbl0588.40001MR0816582DOI10.1524/anly.1985.5.4.301
  12. 10.2140/pjm.1993.160.43, Pacific J.  Math. 160 (1993), 43–51. (1993) MR1227502DOI10.2140/pjm.1993.160.43
  13. 10.1006/jmaa.1993.1082, J.  Math. Anal. Appl. 173 (1993), 497–503. (1993) MR1209334DOI10.1006/jmaa.1993.1082
  14. 10.1006/jmaa.1998.6118, J.  Math. Anal. Appl. 228 (1998), 73–95. (1998) MR1659877DOI10.1006/jmaa.1998.6118
  15. 10.1006/jmaa.1999.6533, J.  Math. Anal. Appl. 238 (1999), 599–603. (1999) Zbl0939.40001MR1715505DOI10.1006/jmaa.1999.6533
  16. 10.1017/S0305004100065312, Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. (1988) Zbl0674.40008MR0938459DOI10.1017/S0305004100065312
  17. 10.1090/S0002-9947-1995-1260176-6, Trans. Amer. Math. Soc. 347 (1995), 1811–1819. (1995) Zbl0830.40002MR1260176DOI10.1090/S0002-9947-1995-1260176-6
  18. On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. (1980) MR0587239
  19. Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73–74. (1951) 
  20. 10.2307/44153029, Real Anal. Exchange 25 (2000), 49–50. (2000) DOI10.2307/44153029
  21. Trigonometric Series. Second edition, Cambridge Univ. Press, Cambridge, 1979. (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.