On topological classification of non-archimedean Fréchet spaces
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 2, page 457-463
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topŚliwa, Wiesƚaw. "On topological classification of non-archimedean Fréchet spaces." Czechoslovak Mathematical Journal 54.2 (2004): 457-463. <http://eudml.org/doc/30875>.
@article{Śliwa2004,
abstract = {We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^\{\mathbb \{N\}\}$ where $D$ is a discrete space with $\mathop \{\mathrm \{c\}ard\}(D)=\mathop \{\mathrm \{d\}ens\}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop \{\mathrm \{d\}ens\}(E)= \mathop \{\mathrm \{d\}ens\}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb \{K\}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb \{K\}^\{\mathbb \{N\}\}$.},
author = {Śliwa, Wiesƚaw},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-archimedean Fréchet spaces; homeomorphisms; non-archimedean Fréchet spaces; homeomorphisms},
language = {eng},
number = {2},
pages = {457-463},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On topological classification of non-archimedean Fréchet spaces},
url = {http://eudml.org/doc/30875},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Śliwa, Wiesƚaw
TI - On topological classification of non-archimedean Fréchet spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 457
EP - 463
AB - We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb {N}}$ where $D$ is a discrete space with $\mathop {\mathrm {c}ard}(D)=\mathop {\mathrm {d}ens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm {d}ens}(E)= \mathop {\mathrm {d}ens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb {K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb {K}^{\mathbb {N}}$.
LA - eng
KW - non-archimedean Fréchet spaces; homeomorphisms; non-archimedean Fréchet spaces; homeomorphisms
UR - http://eudml.org/doc/30875
ER -
References
top- On the structure of perfect sets of points, Proc. Acad. Amsterdam 12 (1910), 785–794. (1910)
- Cardinality and Mackey topologies of non-Archimedean Banach and Fréchet spaces, Bull. Polish Acad. Sci. Math. 44 (1996), 131–141. (1996) MR1416418
- Topics in Functional Analysis over Valued Division Rings, North-Holland Math. Studies 77, North-Holland Publ. Co., Amsterdam, 1982. (1982) Zbl0506.46059MR0688308
- Notes on -adic Banach spaces, Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, The Netherlands, 1976, pp. 1–62. (1976)
- Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978. (1978) Zbl0396.46061MR0512894
- Locally convex spaces over non-spherically complete valued fields, Bull. Soc. Math. Belgique 38 (1986), 187–207. (1986) MR0871313
- 10.1016/S0019-3577(00)80029-4, Indag. Math. (N.S.) 11 (2000), 607–616. (2000) MR1909824DOI10.1016/S0019-3577(00)80029-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.