On topological classification of non-archimedean Fréchet spaces

Wiesƚaw Śliwa

Czechoslovak Mathematical Journal (2004)

  • Volume: 54, Issue: 2, page 457-463
  • ISSN: 0011-4642

Abstract

top
We prove that any infinite-dimensional non-archimedean Fréchet space E is homeomorphic to D where D is a discrete space with c a r d ( D ) = d e n s ( E ) . It follows that infinite-dimensional non-archimedean Fréchet spaces E and F are homeomorphic if and only if d e n s ( E ) = d e n s ( F ) . In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field 𝕂 is homeomorphic to the non-archimedean Fréchet space 𝕂 .

How to cite

top

Śliwa, Wiesƚaw. "On topological classification of non-archimedean Fréchet spaces." Czechoslovak Mathematical Journal 54.2 (2004): 457-463. <http://eudml.org/doc/30875>.

@article{Śliwa2004,
abstract = {We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^\{\mathbb \{N\}\}$ where $D$ is a discrete space with $\mathop \{\mathrm \{c\}ard\}(D)=\mathop \{\mathrm \{d\}ens\}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop \{\mathrm \{d\}ens\}(E)= \mathop \{\mathrm \{d\}ens\}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb \{K\}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb \{K\}^\{\mathbb \{N\}\}$.},
author = {Śliwa, Wiesƚaw},
journal = {Czechoslovak Mathematical Journal},
keywords = {non-archimedean Fréchet spaces; homeomorphisms; non-archimedean Fréchet spaces; homeomorphisms},
language = {eng},
number = {2},
pages = {457-463},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On topological classification of non-archimedean Fréchet spaces},
url = {http://eudml.org/doc/30875},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Śliwa, Wiesƚaw
TI - On topological classification of non-archimedean Fréchet spaces
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 2
SP - 457
EP - 463
AB - We prove that any infinite-dimensional non-archimedean Fréchet space $E$ is homeomorphic to $D^{\mathbb {N}}$ where $D$ is a discrete space with $\mathop {\mathrm {c}ard}(D)=\mathop {\mathrm {d}ens}(E)$. It follows that infinite-dimensional non-archimedean Fréchet spaces $E$ and $F$ are homeomorphic if and only if $\mathop {\mathrm {d}ens}(E)= \mathop {\mathrm {d}ens}(F)$. In particular, any infinite-dimensional non-archimedean Fréchet space of countable type over a field $\mathbb {K}$ is homeomorphic to the non-archimedean Fréchet space $\mathbb {K}^{\mathbb {N}}$.
LA - eng
KW - non-archimedean Fréchet spaces; homeomorphisms; non-archimedean Fréchet spaces; homeomorphisms
UR - http://eudml.org/doc/30875
ER -

References

top
  1. On the structure of perfect sets of points, Proc. Acad. Amsterdam 12 (1910), 785–794. (1910) 
  2. Cardinality and Mackey topologies of non-Archimedean Banach and Fréchet spaces, Bull. Polish Acad. Sci. Math. 44 (1996), 131–141. (1996) MR1416418
  3. Topics in Functional Analysis over Valued Division Rings, North-Holland Math. Studies  77, North-Holland Publ. Co., Amsterdam, 1982. (1982) Zbl0506.46059MR0688308
  4. Notes on p -adic Banach spaces, Report 7633, Mathematisch Instituut, Katholieke Universiteit, Nijmegen, The Netherlands, 1976, pp. 1–62. (1976) 
  5. Non-Archimedean Functional Analysis, Marcel Dekker, New York, 1978. (1978) Zbl0396.46061MR0512894
  6. Locally convex spaces over non-spherically complete valued fields, Bull. Soc. Math. Belgique 38 (1986), 187–207. (1986) MR0871313
  7. 10.1016/S0019-3577(00)80029-4, Indag. Math. (N.S.) 11 (2000), 607–616. (2000) MR1909824DOI10.1016/S0019-3577(00)80029-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.