A nontrivial solution for Neumann noncoercive hemivariational inequalities
Czechoslovak Mathematical Journal (2004)
- Volume: 54, Issue: 4, page 1065-1075
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHalidias, Nikolaos. "A nontrivial solution for Neumann noncoercive hemivariational inequalities." Czechoslovak Mathematical Journal 54.4 (2004): 1065-1075. <http://eudml.org/doc/30921>.
@article{Halidias2004,
abstract = {In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.},
author = {Halidias, Nikolaos},
journal = {Czechoslovak Mathematical Journal},
keywords = {noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals; noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals},
language = {eng},
number = {4},
pages = {1065-1075},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A nontrivial solution for Neumann noncoercive hemivariational inequalities},
url = {http://eudml.org/doc/30921},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Halidias, Nikolaos
TI - A nontrivial solution for Neumann noncoercive hemivariational inequalities
JO - Czechoslovak Mathematical Journal
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 4
SP - 1065
EP - 1075
AB - In this paper we consider Neumann noncoercive hemivariational inequalities, focusing on nontrivial solutions. We use the critical point theory for locally Lipschitz functionals.
LA - eng
KW - noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals; noncoercive hemivariational inequality; critical point theory; nontrivial solution; locally Lipschitz functionals
UR - http://eudml.org/doc/30921
ER -
References
top- 10.1016/0022-247X(81)90095-0, J. Math. Anal. Appl. 80 (1981), 102–129. (1981) Zbl0487.49027MR0614246DOI10.1016/0022-247X(81)90095-0
- Optimization and Nonsmooth Analysis, Wiley, New York, 1983. (1983) Zbl0582.49001MR0709590
- 10.1016/0022-247X(90)90226-6, J. Math. Anal. Appl. 153 (1990), 470–485. (1990) MR1080660DOI10.1016/0022-247X(90)90226-6
- Lectures on the Ekeland Variational Principle with Applications and Detours, Tata Institute of Fundamental Research, Springer, Bombay, 1989. (1989) Zbl0688.49011MR1019559
- 10.1006/jmaa.1999.6701, J. Math. Anal. Appl. 244 (2000), 200–213. (2000) MR1746797DOI10.1006/jmaa.1999.6701
- 10.1016/S0362-546X(96)00039-9, Nonlinear Anal. 29 (1997), 9–26. (1997) MR1447566DOI10.1016/S0362-546X(96)00039-9
- Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers, Dordrecht, 1997. (1997) MR1485775
- Handbook of Multivalued Analysis. Volume II: Applications, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1741926
- 10.2969/jmsj/02710121, J. Math. Soc. Japan 27 (1975), 121–149. (1975) Zbl0292.35034MR0372419DOI10.2969/jmsj/02710121
- Hemivariational Inequalities and Their Applications, Birkhäuser-Verlag, Boston, 1998. (1998) MR0957088
- Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer-Verlag, Berlin, 1993. (1993) Zbl0826.73002MR1385670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.