Extensions of G M -rings

Huanyin Chen; Miaosen Chen

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 2, page 273-281
  • ISSN: 0011-4642

Abstract

top
It is shown that a ring R is a G M -ring if and only if there exists a complete orthogonal set { e 1 , , e n } of idempotents such that all e i R e i are G M -rings. We also investigate G M -rings for Morita contexts, module extensions and power series rings.

How to cite

top

Chen, Huanyin, and Chen, Miaosen. "Extensions of $GM$-rings." Czechoslovak Mathematical Journal 55.2 (2005): 273-281. <http://eudml.org/doc/30944>.

@article{Chen2005,
abstract = {It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.},
author = {Chen, Huanyin, Chen, Miaosen},
journal = {Czechoslovak Mathematical Journal},
keywords = {$GM$-ring; module extension; power series ring; GM-rings; module extensions; power series rings; idempotents; Morita contexts},
language = {eng},
number = {2},
pages = {273-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensions of $GM$-rings},
url = {http://eudml.org/doc/30944},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Chen, Huanyin
AU - Chen, Miaosen
TI - Extensions of $GM$-rings
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 273
EP - 281
AB - It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
LA - eng
KW - $GM$-ring; module extension; power series ring; GM-rings; module extensions; power series rings; idempotents; Morita contexts
UR - http://eudml.org/doc/30944
ER -

References

top
  1. 10.1080/00927879408825098, Comm. Algebra 22 (1994), 4737–4749. (1994) MR1285703DOI10.1080/00927879408825098
  2. Exchange rings with artinian primitive factors, Algebras Represent. Theory 2 (1999), 201–207. (1999) Zbl0960.16009MR1702275
  3. 10.1155/S0161171299225471, Internat. J.  Math. Math. Sci. 22 (1999), 547–558. (1999) Zbl0970.16004MR1717176DOI10.1155/S0161171299225471
  4. 10.1081/AGB-100001535, Comm. Algebra 29 (2001), 703–717. (2001) Zbl0989.16007MR1841993DOI10.1081/AGB-100001535
  5. 10.1007/s10012-001-0209-8, SEA  Bull. Math. 25 (2001), 209–216. (2001) Zbl0999.16005MR1935091DOI10.1007/s10012-001-0209-8
  6. 10.1016/0022-4049(88)90034-5, J.  Pure Appl. Algebra 54 (1988), 261–287. (1988) MR0963548DOI10.1016/0022-4049(88)90034-5
  7. 10.1080/00927879908826443, Comm. Algebra 27 (1999), 477–492. (1999) Zbl0921.16002MR1668301DOI10.1080/00927879908826443
  8. 10.1081/AGB-100002409, Comm. Algebra 29 (2001), 2589–2595. (2001) MR1845131DOI10.1081/AGB-100002409
  9. 10.1016/0021-8693(74)90013-1, J.  Algebra 31 (1974), 182–193. (1974) Zbl0285.16009MR0349745DOI10.1016/0021-8693(74)90013-1
  10. 10.1081/AGB-100001536, Comm. Algebra 29 (2001), 719–735. (2001) Zbl0992.16013MR1841994DOI10.1081/AGB-100001536
  11. 10.1016/0022-4049(81)90049-9, J.  Pure. Appl. Algebra 20 (1981), 71–78. (1981) Zbl0457.16006MR0596154DOI10.1016/0022-4049(81)90049-9
  12. 10.1080/00927879908826649, Comm. Algebra 27 (1999), 3583–3592. (1999) Zbl0946.16007MR1699586DOI10.1080/00927879908826649
  13. 10.1090/S0002-9939-98-04397-4, Proc. Amer. Math. Soc. 126 (1998), 61–64. (1998) MR1452816DOI10.1090/S0002-9939-98-04397-4
  14. 10.1080/00927879608825721, Comm. Algebra 24 (1996), 2915–2929. (1996) Zbl0859.16001MR1396864DOI10.1080/00927879608825721
  15. Stable range condition and cancellation of modules, Pitman Res. Notes Math. 346 (1996), 98–104. (1996) MR1396566
  16. 10.1080/00927879708825882, Comm. Algebra 25 (1997), 661–670. (1997) Zbl0873.16007MR1428806DOI10.1080/00927879708825882

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.