Extensions of -rings
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 2, page 273-281
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin, and Chen, Miaosen. "Extensions of $GM$-rings." Czechoslovak Mathematical Journal 55.2 (2005): 273-281. <http://eudml.org/doc/30944>.
@article{Chen2005,
abstract = {It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.},
author = {Chen, Huanyin, Chen, Miaosen},
journal = {Czechoslovak Mathematical Journal},
keywords = {$GM$-ring; module extension; power series ring; GM-rings; module extensions; power series rings; idempotents; Morita contexts},
language = {eng},
number = {2},
pages = {273-281},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extensions of $GM$-rings},
url = {http://eudml.org/doc/30944},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Chen, Huanyin
AU - Chen, Miaosen
TI - Extensions of $GM$-rings
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 2
SP - 273
EP - 281
AB - It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings.
LA - eng
KW - $GM$-ring; module extension; power series ring; GM-rings; module extensions; power series rings; idempotents; Morita contexts
UR - http://eudml.org/doc/30944
ER -
References
top- 10.1080/00927879408825098, Comm. Algebra 22 (1994), 4737–4749. (1994) MR1285703DOI10.1080/00927879408825098
- Exchange rings with artinian primitive factors, Algebras Represent. Theory 2 (1999), 201–207. (1999) Zbl0960.16009MR1702275
- 10.1155/S0161171299225471, Internat. J. Math. Math. Sci. 22 (1999), 547–558. (1999) Zbl0970.16004MR1717176DOI10.1155/S0161171299225471
- 10.1081/AGB-100001535, Comm. Algebra 29 (2001), 703–717. (2001) Zbl0989.16007MR1841993DOI10.1081/AGB-100001535
- 10.1007/s10012-001-0209-8, SEA Bull. Math. 25 (2001), 209–216. (2001) Zbl0999.16005MR1935091DOI10.1007/s10012-001-0209-8
- 10.1016/0022-4049(88)90034-5, J. Pure Appl. Algebra 54 (1988), 261–287. (1988) MR0963548DOI10.1016/0022-4049(88)90034-5
- 10.1080/00927879908826443, Comm. Algebra 27 (1999), 477–492. (1999) Zbl0921.16002MR1668301DOI10.1080/00927879908826443
- 10.1081/AGB-100002409, Comm. Algebra 29 (2001), 2589–2595. (2001) MR1845131DOI10.1081/AGB-100002409
- 10.1016/0021-8693(74)90013-1, J. Algebra 31 (1974), 182–193. (1974) Zbl0285.16009MR0349745DOI10.1016/0021-8693(74)90013-1
- 10.1081/AGB-100001536, Comm. Algebra 29 (2001), 719–735. (2001) Zbl0992.16013MR1841994DOI10.1081/AGB-100001536
- 10.1016/0022-4049(81)90049-9, J. Pure. Appl. Algebra 20 (1981), 71–78. (1981) Zbl0457.16006MR0596154DOI10.1016/0022-4049(81)90049-9
- 10.1080/00927879908826649, Comm. Algebra 27 (1999), 3583–3592. (1999) Zbl0946.16007MR1699586DOI10.1080/00927879908826649
- 10.1090/S0002-9939-98-04397-4, Proc. Amer. Math. Soc. 126 (1998), 61–64. (1998) MR1452816DOI10.1090/S0002-9939-98-04397-4
- 10.1080/00927879608825721, Comm. Algebra 24 (1996), 2915–2929. (1996) Zbl0859.16001MR1396864DOI10.1080/00927879608825721
- Stable range condition and cancellation of modules, Pitman Res. Notes Math. 346 (1996), 98–104. (1996) MR1396566
- 10.1080/00927879708825882, Comm. Algebra 25 (1997), 661–670. (1997) Zbl0873.16007MR1428806DOI10.1080/00927879708825882
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.