The method of upper and lower solutions for a Lidstone boundary value problem
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 639-652
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuo, Yanping, and Gao, Ying. "The method of upper and lower solutions for a Lidstone boundary value problem." Czechoslovak Mathematical Journal 55.3 (2005): 639-652. <http://eudml.org/doc/30974>.
@article{Guo2005,
abstract = {In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^\{(2n)\}(t)=f(t,u(t),u^\{\prime \prime \}(t),\dots ,u^\{(2(n-1))\}(t)),\quad 0<t<1, u^\{(2i)\}(0)=u^\{(2i)\}(1)=0,\quad 0\le i\le n-1, \]
where $f\:[0,1]\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.},
author = {Guo, Yanping, Gao, Ying},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution; -parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution},
language = {eng},
number = {3},
pages = {639-652},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The method of upper and lower solutions for a Lidstone boundary value problem},
url = {http://eudml.org/doc/30974},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Guo, Yanping
AU - Gao, Ying
TI - The method of upper and lower solutions for a Lidstone boundary value problem
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 639
EP - 652
AB - In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0<t<1, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \]
where $f\:[0,1]\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.
LA - eng
KW - $n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution; -parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution
UR - http://eudml.org/doc/30974
ER -
References
top- 10.1016/S0022-247X(86)80006-3, J. Math. Anal. Appl. 116 (1986), 415–426. (1986) Zbl0634.34009MR0842808DOI10.1016/S0022-247X(86)80006-3
- 10.1155/S0161171294001031, Internat. J. Math. Sci. 17 (1994), 725–740. (1994) MR1298797DOI10.1155/S0161171294001031
- 10.2307/2048482, Proc. Amer. Math. Soc. 112 (1991), 81–86. (1991) MR1043407DOI10.2307/2048482
- 10.1080/00036818808839715, Appl. Anal. 26 (1988), 289–304. (1988) MR0922976DOI10.1080/00036818808839715
- 10.1090/S0002-9939-1979-0545591-4, Proc. Amer. Math. Soc. 77 (1979), 327–335. (1979) Zbl0424.34019MR0545591DOI10.1090/S0002-9939-1979-0545591-4
- On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations 2 (1989), 91–110. (1989) Zbl0715.34032MR0960017
- 10.1006/jmaa.1994.1250, J. Math. Anal. Appl. 185 (1994), 302–320. (1994) Zbl0807.34023MR1283059DOI10.1006/jmaa.1994.1250
- Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E, Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. (1994) MR1275354
- 10.1080/00036818908839878, Appl. Anal. 33 (1989), 267–273. (1989) Zbl0681.34016MR1030113DOI10.1080/00036818908839878
- 10.1016/0362-546X(84)90063-4, Nonlinear Anal. 8 (1984), 107–114. (1984) DOI10.1016/0362-546X(84)90063-4
- 10.1006/jmaa.2000.6887, J. Math. Anal. Appl. 248 (2000), 195–402. (2000) MR1772591DOI10.1006/jmaa.2000.6887
- 10.1006/jmaa.1997.5639, J. Math. Anal. Appl. 215 (1997), 415–422. (1997) MR1490759DOI10.1006/jmaa.1997.5639
- Triple positive symmetric solutions for a Lidstone boundary value problem, Differential Equations Dynam. Systems 7 (1999), 321–330. (1999) MR1861076
- 10.1006/jmaa.1999.6500, J. Math. Anal. Appl. 237 (1999), 710–720. (1999) MR1710319DOI10.1006/jmaa.1999.6500
- 10.1006/jmaa.2000.7028, J. Math. Anal. Appl. 251 (2000), 527–548. (2000) MR1794756DOI10.1006/jmaa.2000.7028
- Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. (1977) MR0473443
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.