The method of upper and lower solutions for a Lidstone boundary value problem

Yanping Guo; Ying Gao

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 639-652
  • ISSN: 0011-4642

Abstract

top
In this paper we develop the monotone method in the presence of upper and lower solutions for the 2 nd order Lidstone boundary value problem u ( 2 n ) ( t ) = f ( t , u ( t ) , u ' ' ( t ) , , u ( 2 ( n - 1 ) ) ( t ) ) , 0 < t < 1 , u ( 2 i ) ( 0 ) = u ( 2 i ) ( 1 ) = 0 , 0 i n - 1 , where f [ 0 , 1 ] × n is continuous. We obtain sufficient conditions on f to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.

How to cite

top

Guo, Yanping, and Gao, Ying. "The method of upper and lower solutions for a Lidstone boundary value problem." Czechoslovak Mathematical Journal 55.3 (2005): 639-652. <http://eudml.org/doc/30974>.

@article{Guo2005,
abstract = {In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^\{(2n)\}(t)=f(t,u(t),u^\{\prime \prime \}(t),\dots ,u^\{(2(n-1))\}(t)),\quad 0<t<1, u^\{(2i)\}(0)=u^\{(2i)\}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb \{R\}^\{n\}\rightarrow \mathbb \{R\}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.},
author = {Guo, Yanping, Gao, Ying},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution; -parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution},
language = {eng},
number = {3},
pages = {639-652},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The method of upper and lower solutions for a Lidstone boundary value problem},
url = {http://eudml.org/doc/30974},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Guo, Yanping
AU - Gao, Ying
TI - The method of upper and lower solutions for a Lidstone boundary value problem
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 639
EP - 652
AB - In this paper we develop the monotone method in the presence of upper and lower solutions for the $2$nd order Lidstone boundary value problem \[ u^{(2n)}(t)=f(t,u(t),u^{\prime \prime }(t),\dots ,u^{(2(n-1))}(t)),\quad 0<t<1, u^{(2i)}(0)=u^{(2i)}(1)=0,\quad 0\le i\le n-1, \] where $f\:[0,1]\times \mathbb {R}^{n}\rightarrow \mathbb {R}$ is continuous. We obtain sufficient conditions on $f$ to guarantee the existence of solutions between a lower solution and an upper solution for the higher order boundary value problem.
LA - eng
KW - $n$-parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution; -parameter eigenvalue problem; Lidstone boundary value problem; lower solution; upper solution
UR - http://eudml.org/doc/30974
ER -

References

top
  1. 10.1016/S0022-247X(86)80006-3, J.  Math. Anal. Appl. 116 (1986), 415–426. (1986) Zbl0634.34009MR0842808DOI10.1016/S0022-247X(86)80006-3
  2. 10.1155/S0161171294001031, Internat. J.  Math. Sci. 17 (1994), 725–740. (1994) MR1298797DOI10.1155/S0161171294001031
  3. 10.2307/2048482, Proc. Amer. Math. Soc. 112 (1991), 81–86. (1991) MR1043407DOI10.2307/2048482
  4. 10.1080/00036818808839715, Appl. Anal. 26 (1988), 289–304. (1988) MR0922976DOI10.1080/00036818808839715
  5. 10.1090/S0002-9939-1979-0545591-4, Proc. Amer. Math. Soc. 77 (1979), 327–335. (1979) Zbl0424.34019MR0545591DOI10.1090/S0002-9939-1979-0545591-4
  6. On fourth-order boundary value problems arising in beam analysis, Differential Integral Equations 2 (1989), 91–110. (1989) Zbl0715.34032MR0960017
  7. 10.1006/jmaa.1994.1250, J.  Math. Anal. Appl. 185 (1994), 302–320. (1994) Zbl0807.34023MR1283059DOI10.1006/jmaa.1994.1250
  8. Upper and lower solutions, Ambrosetti-Prodi problem and positive solutions for fourth-order O. D. E, Riv. Mat. Pura. Appl. 14 (1994), 1129–1138. (1994) MR1275354
  9. 10.1080/00036818908839878, Appl. Anal. 33 (1989), 267–273. (1989) Zbl0681.34016MR1030113DOI10.1080/00036818908839878
  10. 10.1016/0362-546X(84)90063-4, Nonlinear Anal. 8 (1984), 107–114. (1984) DOI10.1016/0362-546X(84)90063-4
  11. 10.1006/jmaa.2000.6887, J.  Math. Anal. Appl. 248 (2000), 195–402. (2000) MR1772591DOI10.1006/jmaa.2000.6887
  12. 10.1006/jmaa.1997.5639, J.  Math. Anal. Appl. 215 (1997), 415–422. (1997) MR1490759DOI10.1006/jmaa.1997.5639
  13. Triple positive symmetric solutions for a Lidstone boundary value problem, Differential Equations Dynam. Systems 7 (1999), 321–330. (1999) MR1861076
  14. 10.1006/jmaa.1999.6500, J.  Math. Anal. Appl. 237 (1999), 710–720. (1999) MR1710319DOI10.1006/jmaa.1999.6500
  15. 10.1006/jmaa.2000.7028, J. Math. Anal. Appl. 251 (2000), 527–548. (2000) MR1794756DOI10.1006/jmaa.2000.7028
  16. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977. (1977) MR0473443

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.