Numerical semigroups with a monotonic Apéry set
José Carlos Rosales; Pedro A. García-Sánchez; Juan Ignacio García-García; M. B. Branco
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 3, page 755-772
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRosales, José Carlos, et al. "Numerical semigroups with a monotonic Apéry set." Czechoslovak Mathematical Journal 55.3 (2005): 755-772. <http://eudml.org/doc/30985>.
@article{Rosales2005,
abstract = {We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.},
author = {Rosales, José Carlos, García-Sánchez, Pedro A., García-García, Juan Ignacio, Branco, M. B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {numerical; semigroups; Apéry; sets; symmetric; affine; proportionally; modular; Diophantine; inequality; numerical semigroups; Apéry sets; affine semigroups; modular Diophantine inequalities; multiplicities; embedding dimensions; Frobenius numbers},
language = {eng},
number = {3},
pages = {755-772},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical semigroups with a monotonic Apéry set},
url = {http://eudml.org/doc/30985},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Rosales, José Carlos
AU - García-Sánchez, Pedro A.
AU - García-García, Juan Ignacio
AU - Branco, M. B.
TI - Numerical semigroups with a monotonic Apéry set
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 755
EP - 772
AB - We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.
LA - eng
KW - numerical; semigroups; Apéry; sets; symmetric; affine; proportionally; modular; Diophantine; inequality; numerical semigroups; Apéry sets; affine semigroups; modular Diophantine inequalities; multiplicities; embedding dimensions; Frobenius numbers
UR - http://eudml.org/doc/30985
ER -
References
top- 10.1016/S0304-3975(96)00195-8, Theoret. Comput. Sci. 173 (1997), 183–208. (1997) MR1436701DOI10.1016/S0304-3975(96)00195-8
- Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris 222 (1946). (1946) MR0017942
- Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598, , , 1997. (1997) MR1357822
- 10.1016/0021-8693(77)90268-X, J. Algebra 49 (1987), 81–95. (1987) MR0568894DOI10.1016/0021-8693(77)90268-X
- 10.2307/2371684, Amer. J. Math. 64 (1942), 299–312. (1942) Zbl0061.06801MR0006196DOI10.2307/2371684
- On prime ideals with generic zero , Proc. Amer. Math. Soc. 47 (1975), 329–332. (1975) MR0389912
- 10.1006/inco.1994.1067, Inform. and Comput. 113 (1994), 143–172. (1994) MR1283022DOI10.1006/inco.1994.1067
- 10.24033/asens.1307, Ann. Scient. École Norm. Sup. 9 (1976), 145–154. (1976) MR0407038DOI10.24033/asens.1307
- Semigroups, semigroup rings and analytically irreducible rings, Reports Dpt. of Mathematics, University of Stockholm, Vol. 1, 1986. (1986)
- 10.1007/BF02573091, Semigroup Forum 35 (1987), 63–83. (1987) DOI10.1007/BF02573091
- 10.2140/pjm.1999.191.75, Pacific J. Math. 191 (1999), 75–83. (1999) DOI10.2140/pjm.1999.191.75
- Commutative Semigroup Rings, The University of Chicago Press, 1984. (1984) Zbl0566.20050MR0741678
- 10.1007/BF01273309, Manuscripta Math 3 (1970), 175–193. (1970) Zbl0211.33801MR0269762DOI10.1007/BF01273309
- 10.1090/S0002-9939-1970-0265353-7, Proc. Amer. Math. Soc. 25 (1973), 748–751. (1973) MR0265353DOI10.1090/S0002-9939-1970-0265353-7
- The Diophantine Frobenius problem, Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000. (2000)
- The Diophantine Frobenius problem, manuscript, .
- 10.1007/BF02574106, Semigroup Forum 52 (1996), 307–318. (1996) Zbl0853.20041MR1377695DOI10.1007/BF02574106
- 10.1006/jabr.1996.0178, J. Algebra 182 (1996), 422–434. (1996) Zbl0856.20043MR1391591DOI10.1006/jabr.1996.0178
- 10.1016/S0022-4049(01)00128-1, J. Pure Appl. Algebra 171 (2002), 303–314. (2002) MR1904486DOI10.1016/S0022-4049(01)00128-1
- Finitely Generated Commutative Monoids, Nova Science Publishers, New York, 1999. (1999) MR1694173
- 10.1112/S0024610701003052, J. London Math. Soc. 65 (2002), 611–623. (2002) MR1895736DOI10.1112/S0024610701003052
- 10.1016/j.jnt.2003.06.002, J. Number Theory 103 (2003), 281–294. (2003) MR2020273DOI10.1016/j.jnt.2003.06.002
- On a linear Diophantine problem of Frobenius, J. Reine Angew. Math. 293/294 (1977), 1–17. (1977) MR0441855
- 10.1017/S0027763000015312, Nagoya Math. J. 49 (1973), 101–109. (1973) Zbl0257.13024MR0318140DOI10.1017/S0027763000015312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.