Numerical semigroups with a monotonic Apéry set

José Carlos Rosales; Pedro A. García-Sánchez; Juan Ignacio García-García; M. B. Branco

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 3, page 755-772
  • ISSN: 0011-4642

Abstract

top
We study numerical semigroups S with the property that if m is the multiplicity of S and w ( i ) is the least element of S congruent with i modulo m , then 0 < w ( 1 ) < < w ( m - 1 ) . The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.

How to cite

top

Rosales, José Carlos, et al. "Numerical semigroups with a monotonic Apéry set." Czechoslovak Mathematical Journal 55.3 (2005): 755-772. <http://eudml.org/doc/30985>.

@article{Rosales2005,
abstract = {We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.},
author = {Rosales, José Carlos, García-Sánchez, Pedro A., García-García, Juan Ignacio, Branco, M. B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {numerical; semigroups; Apéry; sets; symmetric; affine; proportionally; modular; Diophantine; inequality; numerical semigroups; Apéry sets; affine semigroups; modular Diophantine inequalities; multiplicities; embedding dimensions; Frobenius numbers},
language = {eng},
number = {3},
pages = {755-772},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Numerical semigroups with a monotonic Apéry set},
url = {http://eudml.org/doc/30985},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Rosales, José Carlos
AU - García-Sánchez, Pedro A.
AU - García-García, Juan Ignacio
AU - Branco, M. B.
TI - Numerical semigroups with a monotonic Apéry set
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 3
SP - 755
EP - 772
AB - We study numerical semigroups $S$ with the property that if $m$ is the multiplicity of $S$ and $w(i)$ is the least element of $S$ congruent with $i$ modulo $m$, then $0<w(1)<\dots <w(m-1)$. The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.
LA - eng
KW - numerical; semigroups; Apéry; sets; symmetric; affine; proportionally; modular; Diophantine; inequality; numerical semigroups; Apéry sets; affine semigroups; modular Diophantine inequalities; multiplicities; embedding dimensions; Frobenius numbers
UR - http://eudml.org/doc/30985
ER -

References

top
  1. 10.1016/S0304-3975(96)00195-8, Theoret. Comput. Sci. 173 (1997), 183–208. (1997) MR1436701DOI10.1016/S0304-3975(96)00195-8
  2. Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris 222 (1946). (1946) MR0017942
  3. Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains. Memoirs of the Amer. Math. Soc. Vol. 598, , , 1997. (1997) MR1357822
  4. 10.1016/0021-8693(77)90268-X, J.  Algebra 49 (1987), 81–95. (1987) MR0568894DOI10.1016/0021-8693(77)90268-X
  5. 10.2307/2371684, Amer. J.  Math. 64 (1942), 299–312. (1942) Zbl0061.06801MR0006196DOI10.2307/2371684
  6. On prime ideals with generic zero x i = t n i , Proc. Amer. Math. Soc. 47 (1975), 329–332. (1975) MR0389912
  7. 10.1006/inco.1994.1067, Inform. and Comput. 113 (1994), 143–172. (1994) MR1283022DOI10.1006/inco.1994.1067
  8. 10.24033/asens.1307, Ann. Scient. École Norm. Sup. 9 (1976), 145–154. (1976) MR0407038DOI10.24033/asens.1307
  9. Semigroups, semigroup rings and analytically irreducible rings, Reports Dpt. of Mathematics, University of Stockholm, Vol.  1, 1986. (1986) 
  10. 10.1007/BF02573091, Semigroup Forum 35 (1987), 63–83. (1987) DOI10.1007/BF02573091
  11. 10.2140/pjm.1999.191.75, Pacific J.  Math. 191 (1999), 75–83. (1999) DOI10.2140/pjm.1999.191.75
  12. Commutative Semigroup Rings, The University of Chicago Press, 1984. (1984) Zbl0566.20050MR0741678
  13. 10.1007/BF01273309, Manuscripta Math 3 (1970), 175–193. (1970) Zbl0211.33801MR0269762DOI10.1007/BF01273309
  14. 10.1090/S0002-9939-1970-0265353-7, Proc. Amer. Math. Soc. 25 (1973), 748–751. (1973) MR0265353DOI10.1090/S0002-9939-1970-0265353-7
  15. The Diophantine Frobenius problem, Forschungsintitut für Diskrete Mathematik, Bonn, Report No.00893, 2000. (2000) 
  16. The Diophantine Frobenius problem, manuscript, . 
  17. 10.1007/BF02574106, Semigroup Forum 52 (1996), 307–318. (1996) Zbl0853.20041MR1377695DOI10.1007/BF02574106
  18. 10.1006/jabr.1996.0178, J.  Algebra 182 (1996), 422–434. (1996) Zbl0856.20043MR1391591DOI10.1006/jabr.1996.0178
  19. 10.1016/S0022-4049(01)00128-1, J. Pure Appl. Algebra 171 (2002), 303–314. (2002) MR1904486DOI10.1016/S0022-4049(01)00128-1
  20. Finitely Generated Commutative Monoids, Nova Science Publishers, New York, 1999. (1999) MR1694173
  21. 10.1112/S0024610701003052, J.  London Math. Soc. 65 (2002), 611–623. (2002) MR1895736DOI10.1112/S0024610701003052
  22. 10.1016/j.jnt.2003.06.002, J.  Number Theory 103 (2003), 281–294. (2003) MR2020273DOI10.1016/j.jnt.2003.06.002
  23. On a linear Diophantine problem of Frobenius, J.  Reine Angew. Math. 293/294 (1977), 1–17. (1977) MR0441855
  24. 10.1017/S0027763000015312, Nagoya Math.  J. 49 (1973), 101–109. (1973) Zbl0257.13024MR0318140DOI10.1017/S0027763000015312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.