Problems concerning -weak amenability of a Banach algebra
Alireza Medghalchi; Taher Yazdanpanah
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 863-876
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMedghalchi, Alireza, and Yazdanpanah, Taher. "Problems concerning $n$-weak amenability of a Banach algebra." Czechoslovak Mathematical Journal 55.4 (2005): 863-876. <http://eudml.org/doc/30994>.
@article{Medghalchi2005,
abstract = {In this paper we extend the notion of $n$-weak amenability of a Banach algebra $\mathcal \{A\}$ when $n\in \mathbb \{N\}$. Technical calculations show that when $\mathcal \{A\}$ is Arens regular or an ideal in $\mathcal \{A\}^\{**\}$, then $\mathcal \{A\}^*$ is an $\mathcal \{A\}^\{(2n)\}$-module and this idea leads to a number of interesting results on Banach algebras. We then extend the concept of $n$-weak amenability to $n \in \mathbb \{Z\}$.},
author = {Medghalchi, Alireza, Yazdanpanah, Taher},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach algebra; weakly amenable; Arens regular; $n$-weakly amenable; Banach algebra; weakly amenable; Arens regular},
language = {eng},
number = {4},
pages = {863-876},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Problems concerning $n$-weak amenability of a Banach algebra},
url = {http://eudml.org/doc/30994},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Medghalchi, Alireza
AU - Yazdanpanah, Taher
TI - Problems concerning $n$-weak amenability of a Banach algebra
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 863
EP - 876
AB - In this paper we extend the notion of $n$-weak amenability of a Banach algebra $\mathcal {A}$ when $n\in \mathbb {N}$. Technical calculations show that when $\mathcal {A}$ is Arens regular or an ideal in $\mathcal {A}^{**}$, then $\mathcal {A}^*$ is an $\mathcal {A}^{(2n)}$-module and this idea leads to a number of interesting results on Banach algebras. We then extend the concept of $n$-weak amenability to $n \in \mathbb {Z}$.
LA - eng
KW - Banach algebra; weakly amenable; Arens regular; $n$-weakly amenable; Banach algebra; weakly amenable; Arens regular
UR - http://eudml.org/doc/30994
ER -
References
top- Amenability and weak amenability for Beurling and Lipschitz algebra, Proc. London Math. Soc. 55 (1987), 359–377. (1987) MR0896225
- Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54. (1998) MR1489459
- 10.1112/S0024610701002496, J. London Math. Soc. 64 (2001), 707–721. (2001) MR1865558DOI10.1112/S0024610701002496
- 10.4153/CMB-1994-024-4, Canad. Math. Bull. 37 (1994), 165–167. (1994) MR1275699DOI10.4153/CMB-1994-024-4
- The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh 84A (1978), 309–325. (1978) MR0559675
- Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 231–284. (1991) MR1123339
- 10.1007/BF01394319, Invent. Math. 74 (1983), 305–319. (1983) Zbl0529.46041MR0723220DOI10.1007/BF01394319
- Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127 (1972). (1972) Zbl0256.18014MR0374934
- 10.1112/blms/23.3.281, Bull. Lodon Math. Soc. 23 (1991), 281–284. (1991) Zbl0757.43002MR1123339DOI10.1112/blms/23.3.281
- Banach Algebra, the General Theory of -algebra. Vol. 1: Algebra and Banach Algebras, Cambridge University Press, Cambridge, 1994. (1994) MR1270014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.