Characterizations of sub-semihypergroups by various triangular norms

B. Davvaz

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 923-932
  • ISSN: 0011-4642

Abstract

top
We investigate the structure and properties of -sub-semihypergroups, where is an arbitrary triangular norm on a given complete lattice . We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider and , and investigate the connection between -sub-semihypergroups and the probability space.

How to cite

top

Davvaz, B.. "Characterizations of sub-semihypergroups by various triangular norms." Czechoslovak Mathematical Journal 55.4 (2005): 923-932. <http://eudml.org/doc/30999>.

@article{Davvaz2005,
abstract = {We investigate the structure and properties of $TL$-sub-semihypergroups, where $T$ is an arbitrary triangular norm on a given complete lattice $L$. We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider $L=[0,1]$ and $T=\min $, and investigate the connection between $TL$-sub-semihypergroups and the probability space.},
author = {Davvaz, B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {semihypergroup; complete lattice; triangular norm; fundamental relation; probability space; semihypergroups; triangular norms; fundamental relations},
language = {eng},
number = {4},
pages = {923-932},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations of sub-semihypergroups by various triangular norms},
url = {http://eudml.org/doc/30999},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Davvaz, B.
TI - Characterizations of sub-semihypergroups by various triangular norms
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 923
EP - 932
AB - We investigate the structure and properties of $TL$-sub-semihypergroups, where $T$ is an arbitrary triangular norm on a given complete lattice $L$. We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider $L=[0,1]$ and $T=\min $, and investigate the connection between $TL$-sub-semihypergroups and the probability space.
LA - eng
KW - semihypergroup; complete lattice; triangular norm; fundamental relation; probability space; semihypergroups; triangular norms; fundamental relations
UR - http://eudml.org/doc/30999
ER -

References

top
  1. Some properties of fuzzy groups, J.  Math. Anal. Appl. 133 (1998), 93–100. (1998) MR0949320
  2. 10.1016/0022-247X(79)90182-3, J.  Math. Anal. Appl. 69 (1979), 124–130. (1979) MR0535285DOI10.1016/0022-247X(79)90182-3
  3. Lattice Theory, American Mathematical Society, Collequium Publications, Vol. 25, 1979. (1979) Zbl0505.06001MR0598630
  4. Prolegomena of Hypergroup Theory, second edition, Aviani Editor, 1993. (1993) MR1237639
  5. Product of fuzzy -subgroups, Fuzzy Math. 8 (2000), 43–51. (2000) Zbl0957.20054MR1750241
  6. -subpolygroups of a polygroup, Pure Math. Appl. 12 (2001), 137–145. (2001) Zbl1004.20056MR1905125
  7. 10.1007/BF02941917, Korean J. Comput. Appl. Math. 6 (1999), 197–202. (1999) MR1669606DOI10.1007/BF02941917
  8. Fuzzy -groups, Fuzzy sets and systems 101 (1999), 191–195. (1999) Zbl0935.20065MR1658991
  9. Fuzzy hyperideals in semihypergroups, Italian J.  Pure Appl. Math. 8 (2000), 67–74. (2000) Zbl1097.20524MR1793744
  10. 10.1016/0022-247X(67)90189-8, J.  Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
  11. 10.1023/A:1021739030890, Czechoslovak Math.  J. 52(127) (2002), 375–384. (2002) MR1905445DOI10.1023/A:1021739030890
  12. 10.1023/A:1022479320940, Czechoslovak Math.  J. 48(123) (1998), 669–675. (1998) MR1658233DOI10.1023/A:1022479320940
  13. Sur une généralisation de la notion de groupe, Proceedings of the 8th Congress Math. Scandenaves, Stockholm, 1935, pp. 45–49. (1935) Zbl0012.05303
  14. 10.1023/A:1022416410366, Czechoslovak Math.  J. 49(124) (1999), 127–133. (1999) MR1676825DOI10.1023/A:1022416410366
  15. Applications of Fuzzy Sets System Analysis, Birkhäuser-Verlag, Basel, 1975. (1975) MR0490083
  16. 10.1016/0022-247X(71)90199-5, J.  Math. Anal. Appl. 35 (1971), 512–517. (1971) Zbl0194.05501MR0280636DOI10.1016/0022-247X(71)90199-5
  17. 10.2140/pjm.1960.10.313, Pacific J.  Math, 10 (1960), 313–334. (1960) MR0115153DOI10.2140/pjm.1960.10.313
  18. Hyperstructures and Their Representations, Hadronic Press, Palm Harber, 1994. (1994) Zbl0828.20076MR1270451
  19. 10.1006/jmaa.1997.5331, J.  Math. Anal. Appl. 208 (1997), 243–251. (1997) MR1440354DOI10.1006/jmaa.1997.5331
  20. 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338–353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.