Characterizations of sub-semihypergroups by various triangular norms

B. Davvaz

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 923-932
  • ISSN: 0011-4642

Abstract

top
We investigate the structure and properties of T L -sub-semihypergroups, where T is an arbitrary triangular norm on a given complete lattice L . We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider L = [ 0 , 1 ] and T = min , and investigate the connection between T L -sub-semihypergroups and the probability space.

How to cite

top

Davvaz, B.. "Characterizations of sub-semihypergroups by various triangular norms." Czechoslovak Mathematical Journal 55.4 (2005): 923-932. <http://eudml.org/doc/30999>.

@article{Davvaz2005,
abstract = {We investigate the structure and properties of $TL$-sub-semihypergroups, where $T$ is an arbitrary triangular norm on a given complete lattice $L$. We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider $L=[0,1]$ and $T=\min $, and investigate the connection between $TL$-sub-semihypergroups and the probability space.},
author = {Davvaz, B.},
journal = {Czechoslovak Mathematical Journal},
keywords = {semihypergroup; complete lattice; triangular norm; fundamental relation; probability space; semihypergroups; triangular norms; fundamental relations},
language = {eng},
number = {4},
pages = {923-932},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterizations of sub-semihypergroups by various triangular norms},
url = {http://eudml.org/doc/30999},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Davvaz, B.
TI - Characterizations of sub-semihypergroups by various triangular norms
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 923
EP - 932
AB - We investigate the structure and properties of $TL$-sub-semihypergroups, where $T$ is an arbitrary triangular norm on a given complete lattice $L$. We study its structure under the direct product and with respect to the fundamental relation. In particular, we consider $L=[0,1]$ and $T=\min $, and investigate the connection between $TL$-sub-semihypergroups and the probability space.
LA - eng
KW - semihypergroup; complete lattice; triangular norm; fundamental relation; probability space; semihypergroups; triangular norms; fundamental relations
UR - http://eudml.org/doc/30999
ER -

References

top
  1. Some properties of fuzzy groups, J.  Math. Anal. Appl. 133 (1998), 93–100. (1998) MR0949320
  2. 10.1016/0022-247X(79)90182-3, J.  Math. Anal. Appl. 69 (1979), 124–130. (1979) MR0535285DOI10.1016/0022-247X(79)90182-3
  3. Lattice Theory, American Mathematical Society, Collequium Publications, Vol. 25, 1979. (1979) Zbl0505.06001MR0598630
  4. Prolegomena of Hypergroup Theory, second edition, Aviani Editor, 1993. (1993) MR1237639
  5. Product of fuzzy H v -subgroups, Fuzzy Math. 8 (2000), 43–51. (2000) Zbl0957.20054MR1750241
  6. T L -subpolygroups of a polygroup, Pure Math. Appl. 12 (2001), 137–145. (2001) Zbl1004.20056MR1905125
  7. 10.1007/BF02941917, Korean J. Comput. Appl. Math. 6 (1999), 197–202. (1999) MR1669606DOI10.1007/BF02941917
  8. Fuzzy H v -groups, Fuzzy sets and systems 101 (1999), 191–195. (1999) Zbl0935.20065MR1658991
  9. Fuzzy hyperideals in semihypergroups, Italian J.  Pure Appl. Math. 8 (2000), 67–74. (2000) Zbl1097.20524MR1793744
  10. 10.1016/0022-247X(67)90189-8, J.  Math. Anal. Appl. 18 (1967), 145–174. (1967) Zbl0145.24404MR0224391DOI10.1016/0022-247X(67)90189-8
  11. 10.1023/A:1021739030890, Czechoslovak Math.  J. 52(127) (2002), 375–384. (2002) MR1905445DOI10.1023/A:1021739030890
  12. 10.1023/A:1022479320940, Czechoslovak Math.  J. 48(123) (1998), 669–675. (1998) MR1658233DOI10.1023/A:1022479320940
  13. Sur une généralisation de la notion de groupe, Proceedings of the 8th Congress Math. Scandenaves, Stockholm, 1935, pp. 45–49. (1935) Zbl0012.05303
  14. 10.1023/A:1022416410366, Czechoslovak Math.  J. 49(124) (1999), 127–133. (1999) MR1676825DOI10.1023/A:1022416410366
  15. Applications of Fuzzy Sets System Analysis, Birkhäuser-Verlag, Basel, 1975. (1975) MR0490083
  16. 10.1016/0022-247X(71)90199-5, J.  Math. Anal. Appl. 35 (1971), 512–517. (1971) Zbl0194.05501MR0280636DOI10.1016/0022-247X(71)90199-5
  17. 10.2140/pjm.1960.10.313, Pacific J.  Math, 10 (1960), 313–334. (1960) MR0115153DOI10.2140/pjm.1960.10.313
  18. Hyperstructures and Their Representations, Hadronic Press, Palm Harber, 1994. (1994) Zbl0828.20076MR1270451
  19. 10.1006/jmaa.1997.5331, J.  Math. Anal. Appl. 208 (1997), 243–251. (1997) MR1440354DOI10.1006/jmaa.1997.5331
  20. 10.1016/S0019-9958(65)90241-X, Inform. Control 8 (1965), 338–353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.