Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces

Martin Ondreját

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 1003-1039
  • ISSN: 0011-4642

Abstract

top
The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.

How to cite

top

Ondreját, Martin. "Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces." Czechoslovak Mathematical Journal 55.4 (2005): 1003-1039. <http://eudml.org/doc/31007>.

@article{Ondreját2005,
abstract = {The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.},
author = {Ondreját, Martin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Brownian representations; martingale problem; strong Markov property},
language = {eng},
number = {4},
pages = {1003-1039},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces},
url = {http://eudml.org/doc/31007},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Ondreját, Martin
TI - Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 1003
EP - 1039
AB - The paper deals with three issues. First we show a sufficient condition for a cylindrical local martingale to be a stochastic integral with respect to a cylindrical Wiener process. Secondly, we state an infinite dimensional version of the martingale problem of Stroock and Varadhan, and finally we apply the results to show that a weak existence plus uniqueness in law for deterministic initial conditions for an abstract stochastic evolution equation in a Banach space implies the strong Markov property.
LA - eng
KW - Brownian representations; martingale problem; strong Markov property
UR - http://eudml.org/doc/31007
ER -

References

top
  1. 10.1080/17442509708834122, Stochastics and Stochastics Reports 61 (1997), 245–295. (1997) MR1488138DOI10.1080/17442509708834122
  2. Stochastic Differential Equations in Hilbert Spaces, Probability Theory, Banach Center Publications, PWN, Warsaw 5, 1979, pp. 53–74. (1979) Zbl0414.60064MR0561468
  3. Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992. (1992) MR1207136
  4. Representation of Banach space valued martingales as stochastic integrals, Probability in Banach spaces 7, Proc. 7th Int. Conf., Oberwolfach/FRG 1988, Prog. Probab. 21, 1990, pp. 43–62. (1990) Zbl0701.60049MR1105550
  5. Stochastic Processes, J. Wiley & Sons, New York, 1953. (1953) Zbl0053.26802MR0058896
  6. Linear operators, Part I: General theory, Interscience, New York, 1958. (1958) MR1009162
  7. Brownian Motion and Stochastic Calculus. Springer-Verlag, New York, 1988. (1988) MR0917065
  8. Introduction to the Theory of Diffusion Processes, AMS, Providence, 1995. (1995) Zbl0844.60050MR1311478
  9. Topology, Vol. 1, Academic Press, New York and London; Państwowe Wydawnictwo Naukowe, Warsaw, 1966. (1966) 
  10. Martingales browniennes hilbertiennes, C. R. Acad. Sci. Paris Sér. A 276 (1973), 1225–1228. (1973) MR0317406
  11. The Markov property for the solution of the stochastic Navier-Stokes equation, Studia Univ. Babeş-Bolyai Math. 44 (1999), no. 4, 55–71. (1999) Zbl1027.60066MR1989067
  12. Stochastic Integration, Academic Press, New York-London-Toronto, Ont., 1980. (1980) MR0578177
  13. Stochastic Integrals in 2-Uniformly Smooth Banach Spaces. University of Wisconsin, 1978. (1978) 
  14. 10.4064/dm426-0-1, Dissertationes Mathematicae 426 (2004), 1–63. (2004) MR2067962DOI10.4064/dm426-0-1
  15. 10.1007/BF00534964, Z. Wahrscheinlichkeitstheorie verw. Gebiete 33 (1975), 195–208. (1975) Zbl0304.60032MR0394862DOI10.1007/BF00534964
  16. Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. (1983) Zbl0516.47023MR0710486
  17. Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233, Springer-Verlag, Berlin-New York, 1979. (1979) MR0532498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.