On harmonic majorization of the Martin function at infinity in a cone

I. Miyamoto; Minoru Yanagishita; H. Yoshida

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 1041-1054
  • ISSN: 0011-4642

Abstract

top
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.

How to cite

top

Miyamoto, I., Yanagishita, Minoru, and Yoshida, H.. "On harmonic majorization of the Martin function at infinity in a cone." Czechoslovak Mathematical Journal 55.4 (2005): 1041-1054. <http://eudml.org/doc/31008>.

@article{Miyamoto2005,
abstract = {This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.},
author = {Miyamoto, I., Yanagishita, Minoru, Yoshida, H.},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic majorization; cone; minimally thin; harmonic majorization; cone; minimally thin},
language = {eng},
number = {4},
pages = {1041-1054},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On harmonic majorization of the Martin function at infinity in a cone},
url = {http://eudml.org/doc/31008},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Miyamoto, I.
AU - Yanagishita, Minoru
AU - Yoshida, H.
TI - On harmonic majorization of the Martin function at infinity in a cone
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 1041
EP - 1054
AB - This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
LA - eng
KW - harmonic majorization; cone; minimally thin; harmonic majorization; cone; minimally thin
UR - http://eudml.org/doc/31008
ER -

References

top
  1. 10.2969/jmsj/04820299, J.  Math. Soc. Japan 48 (1996), 299-315. (1996) Zbl0862.31002MR1376083DOI10.2969/jmsj/04820299
  2. Potential Theory-Selected Topics. Lecture Notes in Math. Vol.  1633, Springer-Verlag, , 1996. (1996) MR1439503
  3. Positive Harmonic Functions and Hyperbolicity, Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. (1987) MR0973878
  4. On positive harmonic majorization of  y in n × ( 0 , + ) , J.  London Math. Soc. Ser. II 3 (1971), 733–741. (1971) MR0289799
  5. Classical Potential Theory, Springer-Verlag, , 2001. (2001) MR1801253
  6. Generalization of a theorem of Hayman on subharmonic functions in an m -dimensional cone Am. Math. Soc. Transl. II.  Ser., 80 (1969), 119–138. (1969) 
  7. A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser.  AI. Math. 372 (1965), . (1965) Zbl0139.06402MR0188466
  8. On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol.  175, Springer-Verlag, , 1971. (1971) MR0281940
  9. Methods of Mathematical Physics, 1st English edition, Interscience, New York, 1954. (1954) 
  10. A minimum principle for positive harmonic functions, Proc. London Math. Soc. 33 (1976), 2380–250. (1976) Zbl0342.31004MR0409847
  11. Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, 1984. (1984) Zbl0549.31001MR0731258
  12. 10.1016/0001-8708(82)90055-X, Adv. Math. 46 (1982), 80–147. (1982) MR0676988DOI10.1016/0001-8708(82)90055-X
  13. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. (1977) MR0473443
  14. Introduction to Potential Theory, Wiley, New York, 1969. (1969) Zbl0188.17203MR0261018
  15. Beurling’s theorem on a minimum principle for positive harmonic functions, Zapiski Nauchnykh Seminarov LOMI 30 (1972). (1972) MR0330484
  16. 10.4153/CMB-2003-025-5, Canad. Math. Bull. 46 (2003), 252–264. (2003) MR1981679DOI10.4153/CMB-2003-025-5
  17. 10.2969/jmsj/1191593906, J.  Math. Soc. Japan 54 (2002), 487–512. (2002) MR1900954DOI10.2969/jmsj/1191593906
  18. Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel, Lecture Notes in Math. Vol.  563, Springer-Verlag, , 1976, pp. 275–282. (1976) MR0588344
  19. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. (1970) Zbl0207.13501MR0290095
  20. Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. Ser. III 54 (1987), 267–299. (1987) Zbl0645.31003MR0872808
  21. Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel, Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. (1989) MR1663163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.