On harmonic majorization of the Martin function at infinity in a cone
I. Miyamoto; Minoru Yanagishita; H. Yoshida
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 1041-1054
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMiyamoto, I., Yanagishita, Minoru, and Yoshida, H.. "On harmonic majorization of the Martin function at infinity in a cone." Czechoslovak Mathematical Journal 55.4 (2005): 1041-1054. <http://eudml.org/doc/31008>.
@article{Miyamoto2005,
abstract = {This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.},
author = {Miyamoto, I., Yanagishita, Minoru, Yoshida, H.},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic majorization; cone; minimally thin; harmonic majorization; cone; minimally thin},
language = {eng},
number = {4},
pages = {1041-1054},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On harmonic majorization of the Martin function at infinity in a cone},
url = {http://eudml.org/doc/31008},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Miyamoto, I.
AU - Yanagishita, Minoru
AU - Yoshida, H.
TI - On harmonic majorization of the Martin function at infinity in a cone
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 1041
EP - 1054
AB - This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones.
LA - eng
KW - harmonic majorization; cone; minimally thin; harmonic majorization; cone; minimally thin
UR - http://eudml.org/doc/31008
ER -
References
top- 10.2969/jmsj/04820299, J. Math. Soc. Japan 48 (1996), 299-315. (1996) Zbl0862.31002MR1376083DOI10.2969/jmsj/04820299
- Potential Theory-Selected Topics. Lecture Notes in Math. Vol. 1633, Springer-Verlag, , 1996. (1996) MR1439503
- Positive Harmonic Functions and Hyperbolicity, Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. (1987) MR0973878
- On positive harmonic majorization of in , J. London Math. Soc. Ser. II 3 (1971), 733–741. (1971) MR0289799
- Classical Potential Theory, Springer-Verlag, , 2001. (2001) MR1801253
- Generalization of a theorem of Hayman on subharmonic functions in an -dimensional cone Am. Math. Soc. Transl. II. Ser., 80 (1969), 119–138. (1969)
- A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. AI. Math. 372 (1965), . (1965) Zbl0139.06402MR0188466
- On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol. 175, Springer-Verlag, , 1971. (1971) MR0281940
- Methods of Mathematical Physics, 1st English edition, Interscience, New York, 1954. (1954)
- A minimum principle for positive harmonic functions, Proc. London Math. Soc. 33 (1976), 2380–250. (1976) Zbl0342.31004MR0409847
- Classical Potential Theory and its Probabilistic Counterpart, Springer-Verlag, 1984. (1984) Zbl0549.31001MR0731258
- 10.1016/0001-8708(82)90055-X, Adv. Math. 46 (1982), 80–147. (1982) MR0676988DOI10.1016/0001-8708(82)90055-X
- Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977. (1977) MR0473443
- Introduction to Potential Theory, Wiley, New York, 1969. (1969) Zbl0188.17203MR0261018
- Beurling’s theorem on a minimum principle for positive harmonic functions, Zapiski Nauchnykh Seminarov LOMI 30 (1972). (1972) MR0330484
- 10.4153/CMB-2003-025-5, Canad. Math. Bull. 46 (2003), 252–264. (2003) MR1981679DOI10.4153/CMB-2003-025-5
- 10.2969/jmsj/1191593906, J. Math. Soc. Japan 54 (2002), 487–512. (2002) MR1900954DOI10.2969/jmsj/1191593906
- Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel, Lecture Notes in Math. Vol. 563, Springer-Verlag, , 1976, pp. 275–282. (1976) MR0588344
- Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. (1970) Zbl0207.13501MR0290095
- Nevanlinna norm of a subharmonic function on a cone or on a cylinder, Proc. London Math. Soc. Ser. III 54 (1987), 267–299. (1987) Zbl0645.31003MR0872808
- Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel, Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. (1989) MR1663163
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.