On homomorphisms between C * -algebras and linear derivations on C * -algebras

Chun-Gil Park; Hahng-Yun Chu; Won-Gil Park; Hee-Jeong Wee

Czechoslovak Mathematical Journal (2005)

  • Volume: 55, Issue: 4, page 1055-1065
  • ISSN: 0011-4642

Abstract

top
It is shown that every almost linear Pexider mappings f , g , h from a unital C * -algebra 𝒜 into a unital C * -algebra are homomorphisms when f ( 2 n u y ) = f ( 2 n u ) f ( y ) , g ( 2 n u y ) = g ( 2 n u ) g ( y ) and h ( 2 n u y ) = h ( 2 n u ) h ( y ) hold for all unitaries u 𝒜 , all y 𝒜 , and all n , and that every almost linear continuous Pexider mappings f , g , h from a unital C * -algebra 𝒜 of real rank zero into a unital C * -algebra are homomorphisms when f ( 2 n u y ) = f ( 2 n u ) f ( y ) , g ( 2 n u y ) = g ( 2 n u ) g ( y ) and h ( 2 n u y ) = h ( 2 n u ) h ( y ) hold for all u { v 𝒜 v = v * and v is invertible } , all y 𝒜 and all n . Furthermore, we prove the Cauchy-Rassias stability of * -homomorphisms between unital C * -algebras, and -linear * -derivations on unital C * -algebras.

How to cite

top

Park, Chun-Gil, et al. "On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras." Czechoslovak Mathematical Journal 55.4 (2005): 1055-1065. <http://eudml.org/doc/31009>.

@article{Park2005,
abstract = {It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal \{A\}$ into a unital $C^*$-algebra $\mathcal \{B\}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal \{A\}$, all $y \in \mathcal \{A\}$, and all $n\in \mathbb \{Z\}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal \{A\}$ of real rank zero into a unital $C^*$-algebra $\mathcal \{B\}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal \{A\}\mid v=v^*\hspace\{5.0pt\}\text\{and\}\hspace\{5.0pt\}v\hspace\{5.0pt\}\text\{is\} \text\{invertible\}\rbrace $, all $y\in \mathcal \{A\}$ and all $n\in \mathbb \{Z\}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb \{C\}$-linear $*$-derivations on unital $C^*$-algebras.},
author = {Park, Chun-Gil, Chu, Hahng-Yun, Park, Won-Gil, Wee, Hee-Jeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {$C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb \{C\}$-linear $*$-derivation; stability; -algebra homomorphism; -algebra; real rank zero; -linear -derivation; stability},
language = {eng},
number = {4},
pages = {1055-1065},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras},
url = {http://eudml.org/doc/31009},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Park, Chun-Gil
AU - Chu, Hahng-Yun
AU - Park, Won-Gil
AU - Wee, Hee-Jeong
TI - On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 1055
EP - 1065
AB - It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal {A}$ into a unital $C^*$-algebra $\mathcal {B}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal {A}$, all $y \in \mathcal {A}$, and all $n\in \mathbb {Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal {A}$ of real rank zero into a unital $C^*$-algebra $\mathcal {B}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal {A}\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal {A}$ and all $n\in \mathbb {Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb {C}$-linear $*$-derivations on unital $C^*$-algebras.
LA - eng
KW - $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb {C}$-linear $*$-derivation; stability; -algebra homomorphism; -algebra; real rank zero; -linear -derivation; stability
UR - http://eudml.org/doc/31009
ER -

References

top
  1. 10.1016/0022-1236(91)90056-B, J.  Funct. Anal. 99 (1991), 131–149. (1991) MR1120918DOI10.1016/0022-1236(91)90056-B
  2. 10.1006/jmaa.1994.1211, J.  Math. Anal. Appl. 184 (1994), 431–436. (1994) MR1281518DOI10.1006/jmaa.1994.1211
  3. 10.1112/jlms/s2-37.2.294, J.  London Math. Soc. 37 (1988), 294–316. (1988) Zbl0652.46031MR0928525DOI10.1112/jlms/s2-37.2.294
  4. On Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239 (1999), 20–29. (1999) MR1719096
  5. 10.7146/math.scand.a-12116, Math. Scand. 57 (1985), 249–266. (1985) MR0832356DOI10.7146/math.scand.a-12116
  6. Fundamentals of the Theory of Operator Algebras. Elementary Theory, Academic Press, New York, 1994. (1994) MR0719020
  7. 10.11650/twjm/1500407476, Taiwanese J.  Math. 6 (2002), 523–531. (2002) MR1937477DOI10.11650/twjm/1500407476
  8. 10.1090/S0002-9939-1978-0507327-1, Proc. Amer. Math. Soc. 72 (1978), 297–300. (1978) Zbl0398.47040MR0507327DOI10.1090/S0002-9939-1978-0507327-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.