On homomorphisms between -algebras and linear derivations on -algebras
Chun-Gil Park; Hahng-Yun Chu; Won-Gil Park; Hee-Jeong Wee
Czechoslovak Mathematical Journal (2005)
- Volume: 55, Issue: 4, page 1055-1065
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPark, Chun-Gil, et al. "On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras." Czechoslovak Mathematical Journal 55.4 (2005): 1055-1065. <http://eudml.org/doc/31009>.
@article{Park2005,
abstract = {It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal \{A\}$ into a unital $C^*$-algebra $\mathcal \{B\}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal \{A\}$, all $y \in \mathcal \{A\}$, and all $n\in \mathbb \{Z\}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal \{A\}$ of real rank zero into a unital $C^*$-algebra $\mathcal \{B\}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal \{A\}\mid v=v^*\hspace\{5.0pt\}\text\{and\}\hspace\{5.0pt\}v\hspace\{5.0pt\}\text\{is\} \text\{invertible\}\rbrace $, all $y\in \mathcal \{A\}$ and all $n\in \mathbb \{Z\}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb \{C\}$-linear $*$-derivations on unital $C^*$-algebras.},
author = {Park, Chun-Gil, Chu, Hahng-Yun, Park, Won-Gil, Wee, Hee-Jeong},
journal = {Czechoslovak Mathematical Journal},
keywords = {$C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb \{C\}$-linear $*$-derivation; stability; -algebra homomorphism; -algebra; real rank zero; -linear -derivation; stability},
language = {eng},
number = {4},
pages = {1055-1065},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras},
url = {http://eudml.org/doc/31009},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Park, Chun-Gil
AU - Chu, Hahng-Yun
AU - Park, Won-Gil
AU - Wee, Hee-Jeong
TI - On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 55
IS - 4
SP - 1055
EP - 1065
AB - It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal {A}$ into a unital $C^*$-algebra $\mathcal {B}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal {A}$, all $y \in \mathcal {A}$, and all $n\in \mathbb {Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal {A}$ of real rank zero into a unital $C^*$-algebra $\mathcal {B}$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal {A}\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal {A}$ and all $n\in \mathbb {Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb {C}$-linear $*$-derivations on unital $C^*$-algebras.
LA - eng
KW - $C^*$-algebra homomorphism; $C^*$-algebra; real rank zero; $\mathbb {C}$-linear $*$-derivation; stability; -algebra homomorphism; -algebra; real rank zero; -linear -derivation; stability
UR - http://eudml.org/doc/31009
ER -
References
top- 10.1016/0022-1236(91)90056-B, J. Funct. Anal. 99 (1991), 131–149. (1991) MR1120918DOI10.1016/0022-1236(91)90056-B
- 10.1006/jmaa.1994.1211, J. Math. Anal. Appl. 184 (1994), 431–436. (1994) MR1281518DOI10.1006/jmaa.1994.1211
- 10.1112/jlms/s2-37.2.294, J. London Math. Soc. 37 (1988), 294–316. (1988) Zbl0652.46031MR0928525DOI10.1112/jlms/s2-37.2.294
- On Hyers-Ulam-Rassias stability of the Pexider equation, J. Math. Anal. Appl. 239 (1999), 20–29. (1999) MR1719096
- 10.7146/math.scand.a-12116, Math. Scand. 57 (1985), 249–266. (1985) MR0832356DOI10.7146/math.scand.a-12116
- Fundamentals of the Theory of Operator Algebras. Elementary Theory, Academic Press, New York, 1994. (1994) MR0719020
- 10.11650/twjm/1500407476, Taiwanese J. Math. 6 (2002), 523–531. (2002) MR1937477DOI10.11650/twjm/1500407476
- 10.1090/S0002-9939-1978-0507327-1, Proc. Amer. Math. Soc. 72 (1978), 297–300. (1978) Zbl0398.47040MR0507327DOI10.1090/S0002-9939-1978-0507327-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.