On sandwich sets and congruences on regular semigroups
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 1, page 27-46
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPetrich, Mario. "On sandwich sets and congruences on regular semigroups." Czechoslovak Mathematical Journal 56.1 (2006): 27-46. <http://eudml.org/doc/31015>.
@article{Petrich2006,
abstract = {Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^\{\prime \} \in S$ such that $a=aa^\{\prime \}a$, $a^\{\prime \}=a^\{\prime \}aa^\{\prime \}$, we call $S(a)=S(a^\{\prime \}a, aa^\{\prime \})$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_\{a^2\}$ be trivial. For $\mathcal \{F\} \in \lbrace \mathcal \{S\}, \mathcal \{E\}\rbrace $, we define $\mathcal \{F\}$ on $S$ by $a \mathrel \{\mathcal \{F\}\}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal \{S\}$ or $\mathcal \{E\}$ congruences.},
author = {Petrich, Mario},
journal = {Czechoslovak Mathematical Journal},
keywords = {regular semigroup; sandwich set; congruence; natural order; compatibility; completely regular element or semigroup; cryptogroup; regular semigroups; sandwich sets; congruences; natural order; compatibility; completely regular elements; cryptogroups},
language = {eng},
number = {1},
pages = {27-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On sandwich sets and congruences on regular semigroups},
url = {http://eudml.org/doc/31015},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Petrich, Mario
TI - On sandwich sets and congruences on regular semigroups
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 27
EP - 46
AB - Let $S$ be a regular semigroup and $E(S)$ be the set of its idempotents. We call the sets $S(e,f)f$ and $eS(e,f)$ one-sided sandwich sets and characterize them abstractly where $e,f \in E(S)$. For $a, a^{\prime } \in S$ such that $a=aa^{\prime }a$, $a^{\prime }=a^{\prime }aa^{\prime }$, we call $S(a)=S(a^{\prime }a, aa^{\prime })$ the sandwich set of $a$. We characterize regular semigroups $S$ in which all $S(e,f)$ (or all $S(a))$ are right zero semigroups (respectively are trivial) in several ways including weak versions of compatibility of the natural order. For every $a \in S$, we also define $E(a)$ as the set of all idempotets $e$ such that, for any congruence $\rho $ on $S$, $a \rho a^2$ implies that $a \rho e$. We study the restrictions on $S$ in order that $S(a)$ or $E(a)\cap D_{a^2}$ be trivial. For $\mathcal {F} \in \lbrace \mathcal {S}, \mathcal {E}\rbrace $, we define $\mathcal {F}$ on $S$ by $a \mathrel {\mathcal {F}}b$ if $F(a) \cap F (b)\ne \emptyset $. We establish for which $S$ are $\mathcal {S}$ or $\mathcal {E}$ congruences.
LA - eng
KW - regular semigroup; sandwich set; congruence; natural order; compatibility; completely regular element or semigroup; cryptogroup; regular semigroups; sandwich sets; congruences; natural order; compatibility; completely regular elements; cryptogroups
UR - http://eudml.org/doc/31015
ER -
References
top- Free objects in joins of strict inverse and completely simple semigroups, J. London Math. Soc. 45 (1992), 491–507. (1992) MR1180258
- 10.1016/0022-4049(92)90058-N, J. Pure Appl. Algebra 81 (1992), 219–245. (1992) Zbl0809.20054MR1179099DOI10.1016/0022-4049(92)90058-N
- On the compatibility of the natural order on a regular semigroup, Proc. Royal Soc. Edinburgh A94 (1983), 79–84. (1983) MR0700501
- An introduction to semigroup theory, Academic Press, London, 1976. (1976) Zbl0355.20056MR0466355
- Congruences et équivalences de Green sur un demi-groupe régulier, C.R. Acad. Sci., Paris 262 (1966), 613–616. (1966) Zbl0136.26603MR0207872
- Structure of regular semigroups, Mem. Amer. Math. Soc. 224 (1979). (1979) Zbl0457.20051MR0546362
- The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc. 23 (1980), 249–260. (1980) Zbl0459.20054MR0620922
- Introduction to semigroups, Merrill, Columbus, 1973. (1973) Zbl0321.20037MR0393206
- Inverse semigroups, Wiley, New York, 1984. (1984) Zbl0546.20053MR0752899
- 10.1016/0021-8693(91)90086-N, J. Algebra 137 (1991), 166–179. (1991) Zbl0714.20053MR1090216DOI10.1016/0021-8693(91)90086-N
- 10.1016/0021-8693(74)90064-7, J. Algebra 31 (1974), 209–217. (1974) Zbl0301.20058MR0346078DOI10.1016/0021-8693(74)90064-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.