On a homogeneity condition for M V -algebras

Ján Jakubík

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 1, page 79-98
  • ISSN: 0011-4642

Abstract

top
In this paper we deal with a homogeneity condition for an M V -algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to α -completeness, where α runs over the class of all infinite cardinals.

How to cite

top

Jakubík, Ján. "On a homogeneity condition for $MV$-algebras." Czechoslovak Mathematical Journal 56.1 (2006): 79-98. <http://eudml.org/doc/31018>.

@article{Jakubík2006,
abstract = {In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {$MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product; MV-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product},
language = {eng},
number = {1},
pages = {79-98},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a homogeneity condition for $MV$-algebras},
url = {http://eudml.org/doc/31018},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jakubík, Ján
TI - On a homogeneity condition for $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 79
EP - 98
AB - In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.
LA - eng
KW - $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product; MV-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
UR - http://eudml.org/doc/31018
ER -

References

top
  1. 10.1112/jlms/s2-12.3.320, J.  London Math. Soc. 12 (1976), 320–322. (1976) Zbl0333.06008MR0401579DOI10.1112/jlms/s2-12.3.320
  2. Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  3. 10.1112/plms/s3-19.3.444, Proc. London Math. Soc. 19 (1969), 444–480. (1969) MR0244125DOI10.1112/plms/s3-19.3.444
  4. New Trends in Quantum Structures, Kluwer Academic Publishers and Ister Science, Dordrecht and Bratislava, 2000. (2000) MR1861369
  5. 10.4064/fm-74-2-85-98, Fundamenta Math. 74 (1972), 85–98. (1972) MR0302528DOI10.4064/fm-74-2-85-98
  6. Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math.  J. 28 (1978), 484–504. (1978) MR0505957
  7. Direct product decompositions of M V -algebras, Czechoslovak Math.  J. 44 (1994), 725–739. (1994) 
  8. On complete M V -algebras, Czechoslovak Math.  J. 45 (1995), 473–480. (1995) MR1344513
  9. 10.1023/A:1022436113418, Czechoslovak Math.  J. 48 (1998), 575–582. (1998) MR1637871DOI10.1023/A:1022436113418
  10. Retract mappings of projectable M V -algebras, Soft Computing 4 (2000), 27–32. (2000) 
  11. Direct product decompositions of pseudo M V -algebras, Archivum Math. 37 (2001), 131–142. (2001) MR1838410
  12. On the α -completeness of pseudo M V -algebras, Math. Slovaca 52 (2002), 511–516. (2002) MR1963441
  13. 10.1007/s10587-004-6449-x, Czechoslovak Math.  J 54 (2004), 1035–1053. (2004) MR2100012DOI10.1007/s10587-004-6449-x
  14. Some questions about complete Boolean-algebras, Proc. Sympos. Pure Math. 2 (1961), 129–140. (1961) Zbl0101.27104MR0138570
  15. 10.1090/S0002-9947-1962-0138569-8, Trans. Amer. Math. Soc. 104 (1962), 334–346. (1962) Zbl0105.09401MR0138569DOI10.1090/S0002-9947-1962-0138569-8
  16. Riesz Spaces, Vol.  1, North Holland, Amsterdam, 1971. (1971) 

NotesEmbed ?

top

You must be logged in to post comments.