On a homogeneity condition for M V -algebras

Ján Jakubík

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 1, page 79-98
  • ISSN: 0011-4642

Abstract

top
In this paper we deal with a homogeneity condition for an M V -algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to α -completeness, where α runs over the class of all infinite cardinals.

How to cite

top

Jakubík, Ján. "On a homogeneity condition for $MV$-algebras." Czechoslovak Mathematical Journal 56.1 (2006): 79-98. <http://eudml.org/doc/31018>.

@article{Jakubík2006,
abstract = {In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {$MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product; MV-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product},
language = {eng},
number = {1},
pages = {79-98},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a homogeneity condition for $MV$-algebras},
url = {http://eudml.org/doc/31018},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jakubík, Ján
TI - On a homogeneity condition for $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 1
SP - 79
EP - 98
AB - In this paper we deal with a homogeneity condition for an $MV$-algebra concerning a generalized cardinal property. As an application, we consider the homogeneity with respect to $\alpha $-completeness, where $\alpha $ runs over the class of all infinite cardinals.
LA - eng
KW - $MV$-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product; MV-algebra; generalized cardinal property; projectability; orthogonal completeness; direct product
UR - http://eudml.org/doc/31018
ER -

References

top
  1. 10.1112/jlms/s2-12.3.320, J.  London Math. Soc. 12 (1976), 320–322. (1976) Zbl0333.06008MR0401579DOI10.1112/jlms/s2-12.3.320
  2. Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000. (2000) MR1786097
  3. 10.1112/plms/s3-19.3.444, Proc. London Math. Soc. 19 (1969), 444–480. (1969) MR0244125DOI10.1112/plms/s3-19.3.444
  4. New Trends in Quantum Structures, Kluwer Academic Publishers and Ister Science, Dordrecht and Bratislava, 2000. (2000) MR1861369
  5. 10.4064/fm-74-2-85-98, Fundamenta Math. 74 (1972), 85–98. (1972) MR0302528DOI10.4064/fm-74-2-85-98
  6. Orthogonal hull of a strongly projectable lattice ordered group, Czechoslovak Math.  J. 28 (1978), 484–504. (1978) MR0505957
  7. Direct product decompositions of M V -algebras, Czechoslovak Math.  J. 44 (1994), 725–739. (1994) 
  8. On complete M V -algebras, Czechoslovak Math.  J. 45 (1995), 473–480. (1995) MR1344513
  9. 10.1023/A:1022436113418, Czechoslovak Math.  J. 48 (1998), 575–582. (1998) MR1637871DOI10.1023/A:1022436113418
  10. Retract mappings of projectable M V -algebras, Soft Computing 4 (2000), 27–32. (2000) 
  11. Direct product decompositions of pseudo M V -algebras, Archivum Math. 37 (2001), 131–142. (2001) MR1838410
  12. On the α -completeness of pseudo M V -algebras, Math. Slovaca 52 (2002), 511–516. (2002) MR1963441
  13. 10.1007/s10587-004-6449-x, Czechoslovak Math.  J 54 (2004), 1035–1053. (2004) MR2100012DOI10.1007/s10587-004-6449-x
  14. Some questions about complete Boolean-algebras, Proc. Sympos. Pure Math. 2 (1961), 129–140. (1961) Zbl0101.27104MR0138570
  15. 10.1090/S0002-9947-1962-0138569-8, Trans. Amer. Math. Soc. 104 (1962), 334–346. (1962) Zbl0105.09401MR0138569DOI10.1090/S0002-9947-1962-0138569-8
  16. Riesz Spaces, Vol.  1, North Holland, Amsterdam, 1971. (1971) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.